Files
FastDeploy/test/graph_optimization/test_cuda_graph.py
2025-07-21 14:05:45 +08:00

135 lines
4.1 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import paddle
from fastdeploy.config import FDConfig, GraphOptimizationConfig
from fastdeploy.model_executor.forward_meta import ForwardMeta
from fastdeploy.model_executor.graph_optimization.decorator import (
support_graph_optimization,
)
@support_graph_optimization
class TestCase1SubLayer1(paddle.nn.Layer):
"""Sub layer 1 of test case 1"""
def __init__(self, fd_config: FDConfig, **kwargs):
super().__init__()
def forward(self, _, forward_meta: ForwardMeta):
"""Sub layer1 forward pass"""
output = paddle.add(forward_meta.input_ids, forward_meta.input_ids)
print(" SubLayer1 Output: {output}")
return output
class TestCase1SubLayer2(paddle.nn.Layer):
""" """
def __init__(self, fd_config: FDConfig, **kwargs):
super().__init__()
def forward(self, _, forward_meta: ForwardMeta):
"""Sub layer2 forward pass"""
x = paddle.ones_like(forward_meta.input_ids)
y = paddle.ones_like(forward_meta.input_ids)
output = x + y
print(" SubLayer2 Output: {output}")
return output
@support_graph_optimization
class TestCase1SubLayer3(paddle.nn.Layer):
""" """
def __init__(self, fd_config: FDConfig, **kwargs):
super().__init__()
def forward(self, _, forward_meta: ForwardMeta):
"""Sub layer3 forward pass"""
output = paddle.add(forward_meta.input_ids, forward_meta.input_ids)
print(" SubLayer3 Output: {output}")
return output
class TestModel1(paddle.nn.Layer):
"""Tast Model"""
def __init__(self, fd_config: FDConfig, **kwargs):
super().__init__()
self.fd_config = fd_config
def forward(self, _, forward_meta: ForwardMeta):
"""Test model for ward pass"""
self.sublayer1 = TestCase1SubLayer1(self.fd_config)
self.sublayer2 = TestCase1SubLayer2(self.fd_config)
self.sublayer3 = TestCase1SubLayer3(self.fd_config)
# sublayer1 use cuda graph
sub_meta1 = forward_meta
sublayer1_output = self.sublayer1(_=None, forward_meta=sub_meta1)
# sublayer2 not use cuda garph
sub_meta2 = ForwardMeta(input_ids=sublayer1_output)
sublayer2_output = self.sublayer2(_=None, forward_meta=sub_meta2)
# sublayer3 use cuda graph
sub_meta3 = ForwardMeta(input_ids=sublayer2_output)
sublayer3_output = self.sublayer3(_=None, forward_meta=sub_meta3)
return sublayer3_output
@support_graph_optimization
class TestModel2(paddle.nn.Layer):
"""Tast Model"""
def __init__(self, fd_config: FDConfig, **kwargs):
super().__init__()
def forward(self, _, forward_meta: ForwardMeta):
"""Test model for ward pass"""
return forward_meta.input_ids + forward_meta.input_ids
def run_test_case():
"""Run test case"""
# Set llm config1
graph_opt_config = GraphOptimizationConfig()
graph_opt_config.use_cudagraph = True
graph_opt_config.cudagraph_capture_sizes = [1]
fd_config = FDConfig(graph_opt_config=graph_opt_config)
# Run Test Case1
test_model1 = TestModel1(fd_config=fd_config)
input_tensor1 = paddle.zeros([1, 8])
forward_meta1 = ForwardMeta(input_ids=input_tensor1)
output1 = test_model1(_=None, forward_meta=forward_meta1)
print(output1)
# Run Test Case2
test_model2 = TestModel2(fd_config=fd_config)
input_tensor2 = paddle.zeros([1, 8])
forward_meta2 = ForwardMeta(input_ids=input_tensor2)
output2 = test_model2(_=None, forward_meta=forward_meta2)
print(output2)
if __name__ == "__main__":
run_test_case()