mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-04 00:06:38 +08:00
109 lines
5.0 KiB
Plaintext
109 lines
5.0 KiB
Plaintext
// Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "helper.h"
|
|
#include "paddle/extension.h"
|
|
|
|
template <paddle::DataType D>
|
|
void SwapCacheImpl(const paddle::Tensor& cache_gpu, // gpu
|
|
const int64_t& cache_cpu_pointer, // cpu
|
|
const int64_t& max_block_num_cpu,
|
|
const std::vector<int64_t>& swap_block_ids_gpu,
|
|
const std::vector<int64_t>& swap_block_ids_cpu,
|
|
// const paddle::Tensor& swap_block_ids_dst, // cpu
|
|
// const paddle::Tensor& swap_block_ids_src, // cpu
|
|
int mode) {
|
|
typedef PDTraits<D> traits_;
|
|
typedef typename traits_::DataType DataType_;
|
|
typedef typename traits_::data_t data_t;
|
|
data_t* cache_gpu_ptr = const_cast<data_t*>(cache_gpu.data<data_t>());
|
|
auto* cache_cpu_ptr = reinterpret_cast<data_t*>(cache_cpu_pointer);
|
|
auto cache_shape = cache_gpu.shape();
|
|
// auto* swap_block_ids_dst_ptr = swap_block_ids_dst.data<int32_t>();
|
|
// auto* swap_block_ids_src_ptr = swap_block_ids_src.data<int32_t>();
|
|
// const int swap_block_length = swap_block_ids_dst.shape()[0];
|
|
const int64_t max_block_num_gpu = cache_shape[0];
|
|
const int num_heads = cache_shape[1];
|
|
const int block_size = cache_shape[2];
|
|
const int head_dim = cache_shape[3];
|
|
const int64_t cache_stride = num_heads * block_size * head_dim;
|
|
auto stream = cache_gpu.stream();
|
|
for (int i = 0; i < swap_block_ids_gpu.size(); ++i) {
|
|
int64_t gpu_block_id = swap_block_ids_gpu[i];
|
|
int64_t cpu_block_id = swap_block_ids_cpu[i];
|
|
assert(gpu_block_id >= 0 && gpu_block_id < max_block_num_gpu);
|
|
assert(cpu_block_id >= 0 && cpu_block_id < max_block_num_cpu);
|
|
auto *cache_gpu_ptr_now = cache_gpu_ptr + gpu_block_id * cache_stride;
|
|
auto *cache_cpu_ptr_now = cache_cpu_ptr + cpu_block_id * cache_stride;
|
|
if (mode == 0) { // copy from device to host
|
|
cudaMemcpyAsync(cache_cpu_ptr_now, cache_gpu_ptr_now, cache_stride * sizeof(DataType_), cudaMemcpyDeviceToHost, stream);
|
|
// cudaMemcpy(cache_dst_ptr_now, cache_src_ptr_now, cache_stride * sizeof(DataType_), cudaMemcpyDeviceToHost);
|
|
} else { // copy from host to device
|
|
cudaMemcpyAsync(cache_gpu_ptr_now, cache_cpu_ptr_now, cache_stride * sizeof(DataType_), cudaMemcpyHostToDevice, stream);
|
|
// cudaMemcpy(cache_dst_ptr_now, cache_src_ptr_now, cache_stride * sizeof(DataType_), cudaMemcpyHostToDevice);
|
|
}
|
|
}
|
|
cudaStreamSynchronize(stream);
|
|
}
|
|
|
|
void SwapCache(const paddle::Tensor& cache_gpu, // gpu
|
|
int64_t cache_cpu_ptr, // cpu memory pointer
|
|
int64_t max_block_num_cpu, // cpu max block num
|
|
const std::vector<int64_t>& swap_block_ids_gpu,
|
|
const std::vector<int64_t>& swap_block_ids_cpu,
|
|
int rank,
|
|
int mode) {
|
|
cudaSetDevice(rank); // used for distributed launch
|
|
switch (cache_gpu.dtype()) {
|
|
case paddle::DataType::BFLOAT16:
|
|
return SwapCacheImpl<paddle::DataType::BFLOAT16>(
|
|
cache_gpu,
|
|
cache_cpu_ptr,
|
|
max_block_num_cpu,
|
|
swap_block_ids_gpu,
|
|
swap_block_ids_cpu,
|
|
mode);
|
|
case paddle::DataType::FLOAT16:
|
|
return SwapCacheImpl<paddle::DataType::FLOAT16>(
|
|
cache_gpu,
|
|
cache_cpu_ptr,
|
|
max_block_num_cpu,
|
|
swap_block_ids_gpu,
|
|
swap_block_ids_cpu,
|
|
mode);
|
|
case paddle::DataType::UINT8:
|
|
return SwapCacheImpl<paddle::DataType::UINT8>(
|
|
cache_gpu,
|
|
cache_cpu_ptr,
|
|
max_block_num_cpu,
|
|
swap_block_ids_gpu,
|
|
swap_block_ids_cpu,
|
|
mode);
|
|
default:
|
|
PD_THROW("Unsupported data type.");
|
|
}
|
|
}
|
|
|
|
PD_BUILD_STATIC_OP(swap_cache)
|
|
.Inputs({"cache_gpu",})
|
|
.Attrs({"cache_cpu_ptr: int64_t",
|
|
"max_block_num_cpu: int64_t",
|
|
"swap_block_ids_gpu: std::vector<int64_t>",
|
|
"swap_block_ids_cpu: std::vector<int64_t>",
|
|
"rank: int",
|
|
"mode: int",})
|
|
.Outputs({"cache_dst_out"})
|
|
.SetInplaceMap({{"cache_gpu", "cache_dst_out"}})
|
|
.SetKernelFn(PD_KERNEL(SwapCache));
|