mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-26 20:41:53 +08:00
310 lines
10 KiB
Python
310 lines
10 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License"
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
# This file is modified from https://github.com/vllm-project/vllm/blob/main/benchmarks/benchmark_dataset.py
|
|
|
|
|
|
import base64
|
|
import io
|
|
import json
|
|
import logging
|
|
import random
|
|
from abc import ABC, abstractmethod
|
|
from collections.abc import Mapping
|
|
from dataclasses import dataclass
|
|
from io import BytesIO
|
|
from typing import Any, Callable, Optional, Union
|
|
from PIL import Image
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
@dataclass
|
|
class SampleRequest:
|
|
"""
|
|
Represents a single inference request for benchmarking.
|
|
"""
|
|
|
|
prompt: Union[str, Any]
|
|
history_QA: Union[str, Any]
|
|
json_data: Optional[dict]
|
|
prompt_len: int
|
|
expected_output_len: int
|
|
|
|
|
|
class BenchmarkDataset(ABC):
|
|
"""BenchmarkDataset"""
|
|
DEFAULT_SEED = 0
|
|
IS_MULTIMODAL = False
|
|
|
|
def __init__(
|
|
self,
|
|
dataset_path: Optional[str] = None,
|
|
random_seed: int = DEFAULT_SEED,
|
|
hyperparameter_path: Optional[str] = None,
|
|
) -> None:
|
|
"""
|
|
Initialize the BenchmarkDataset with an optional dataset path and random
|
|
seed. Args:
|
|
dataset_path (Optional[str]): Path to the dataset. If None, it
|
|
indicates that a default or random dataset might be used.
|
|
random_seed (int): Seed value for reproducible shuffling or
|
|
sampling. Defaults to DEFAULT_SEED.
|
|
"""
|
|
self.dataset_path = dataset_path
|
|
# Set the random seed, ensuring that a None value is replaced with the
|
|
# default seed.
|
|
self.random_seed = (random_seed
|
|
if random_seed is not None else self.DEFAULT_SEED)
|
|
self.data = None
|
|
self.hyperparameter_path = hyperparameter_path
|
|
self.hyperparameters = {}
|
|
|
|
def load_data(self) -> None:
|
|
"""
|
|
Load data from the dataset path into self.data.
|
|
|
|
This method must be overridden by subclasses since the method to load
|
|
data will vary depending on the dataset format and source.
|
|
|
|
Raises:
|
|
NotImplementedError: If a subclass does not implement this method.
|
|
"""
|
|
# TODO (jenniferzhao): add support for downloading data
|
|
raise NotImplementedError(
|
|
"load_data must be implemented in subclasses.")
|
|
|
|
@abstractmethod
|
|
def sample(self, num_requests: int) -> list[SampleRequest]:
|
|
"""
|
|
Abstract method to generate sample requests from the dataset.
|
|
|
|
Subclasses must override this method to implement dataset-specific logic
|
|
for generating a list of SampleRequest objects.
|
|
|
|
Args:
|
|
num_requests (int): The number of sample requests to generate.
|
|
|
|
Returns:
|
|
list[SampleRequest]: A list of sample requests generated from the
|
|
dataset.
|
|
"""
|
|
raise NotImplementedError("sample must be implemented in subclasses.")
|
|
|
|
def maybe_oversample_requests(self, requests: list[SampleRequest],
|
|
num_requests: int) -> None:
|
|
"""
|
|
Oversamples the list of requests if its size is less than the desired
|
|
number.
|
|
|
|
Args:
|
|
requests (List[SampleRequest]): The current list of sampled
|
|
requests. num_requests (int): The target number of requests.
|
|
"""
|
|
if len(requests) < num_requests:
|
|
random.seed(self.random_seed)
|
|
additional = random.choices(requests,
|
|
k=num_requests - len(requests))
|
|
requests.extend(additional)
|
|
logger.info("Oversampled requests to reach %d total samples.",
|
|
num_requests)
|
|
|
|
|
|
def is_valid_sequence(
|
|
prompt_len: int,
|
|
output_len: int,
|
|
min_len: int = 4,
|
|
max_prompt_len: int = 1024,
|
|
max_total_len: int = 2048,
|
|
skip_min_output_len_check: bool = False,
|
|
) -> bool:
|
|
"""
|
|
Validate a sequence based on prompt and output lengths.
|
|
|
|
Default pruning criteria are copied from the original `sample_hf_requests`
|
|
and `sample_sharegpt_requests` functions in benchmark_serving.py, as well as
|
|
from `sample_requests` in benchmark_throughput.py.
|
|
"""
|
|
# Check for invalid conditions
|
|
prompt_too_short = prompt_len < min_len
|
|
output_too_short = (not skip_min_output_len_check) and (output_len
|
|
< min_len)
|
|
prompt_too_long = prompt_len > max_prompt_len
|
|
combined_too_long = (prompt_len + output_len) > max_total_len
|
|
|
|
# Return True if none of the invalid conditions are met
|
|
return not (prompt_too_short or output_too_short or prompt_too_long
|
|
or combined_too_long)
|
|
|
|
|
|
def process_image(image: Any) -> Mapping[str, Any]:
|
|
"""
|
|
Process a single image input and return a multimedia content dictionary.
|
|
|
|
Supports three input types:
|
|
|
|
1. Dictionary with raw image bytes: - Expects a dict with a 'bytes' key
|
|
containing raw image data. - Loads the bytes as a PIL.Image.Image.
|
|
|
|
2. PIL.Image.Image input: - Converts the image to RGB. - Saves the image as
|
|
a JPEG in memory. - Encodes the JPEG data as a base64 string. - Returns
|
|
a dictionary with the image as a base64 data URL.
|
|
|
|
3. String input: - Treats the string as a URL or local file path. -
|
|
Prepends "file://" if the string doesn't start with "http://" or
|
|
"file://". - Returns a dictionary with the image URL.
|
|
|
|
Raises:
|
|
ValueError: If the input is not a supported type.
|
|
"""
|
|
if isinstance(image, dict) and 'bytes' in image:
|
|
image = Image.open(BytesIO(image['bytes']))
|
|
if isinstance(image, Image.Image):
|
|
image = image.convert("RGB")
|
|
with io.BytesIO() as image_data:
|
|
image.save(image_data, format="JPEG")
|
|
image_base64 = base64.b64encode(
|
|
image_data.getvalue()).decode("utf-8")
|
|
return {
|
|
"type": "image_url",
|
|
"image_url": {
|
|
"url": f"data:image/jpeg;base64,{image_base64}"
|
|
},
|
|
}
|
|
|
|
if isinstance(image, str):
|
|
image_url = (image if image.startswith(
|
|
("http://", "file://")) else f"file://{image}")
|
|
return {"type": "image_url", "image_url": {"url": image_url}}
|
|
|
|
raise ValueError(f"Invalid image input {image}. Must be a PIL.Image.Image"
|
|
" or str or dictionary with raw image bytes.")
|
|
|
|
|
|
class EBDataset(BenchmarkDataset):
|
|
"""
|
|
Implements the ShareGPT dataset. Loads data from a JSON file and generates
|
|
sample requests based on conversation turns.
|
|
"""
|
|
|
|
temperature: float
|
|
repetition_penalty: float
|
|
frequency_penalty: float
|
|
presence_penalty: float
|
|
top_p: float
|
|
prompt_len: int
|
|
|
|
def __init__(self, **kwargs) -> None:
|
|
super().__init__(**kwargs)
|
|
self.load_data()
|
|
|
|
def load_data(self) -> None:
|
|
if self.dataset_path is None:
|
|
raise ValueError("dataset_path must be provided for loading data.")
|
|
|
|
with open(self.dataset_path, encoding="utf-8") as f:
|
|
self.data = [json.loads(i.strip()) for i in f.readlines()]
|
|
|
|
def sample(
|
|
self,
|
|
num_requests: int,
|
|
lora_path: Optional[str] = None,
|
|
max_loras: Optional[int] = None,
|
|
output_len: Optional[int] = None,
|
|
enable_multimodal_chat: bool = False,
|
|
**kwargs,
|
|
) -> list:
|
|
samples: list = []
|
|
for entry in self.data:
|
|
if len(samples) >= num_requests:
|
|
break
|
|
prompt = entry["text"]
|
|
self.temperature = float(entry["temperature"])
|
|
self.repetition_penalty = float(entry["penalty_score"])
|
|
self.frequency_penalty = float(entry["frequency_score"])
|
|
self.presence_penalty = float(entry["presence_score"])
|
|
self.top_p = float(entry["topp"])
|
|
self.prompt_len = int(entry["input_token_num"])
|
|
new_output_len = int(entry["max_dec_len"])
|
|
|
|
if enable_multimodal_chat:
|
|
prompt = self.apply_multimodal_chat_transformation(
|
|
prompt, None)
|
|
samples.append(
|
|
SampleRequest(
|
|
prompt=prompt,
|
|
prompt_len=self.prompt_len,
|
|
history_QA=[],
|
|
expected_output_len=new_output_len,
|
|
))
|
|
|
|
self.maybe_oversample_requests(samples, num_requests)
|
|
return samples
|
|
|
|
|
|
class EBChatDataset(BenchmarkDataset):
|
|
"""
|
|
Implements the ShareGPT dataset. Loads data from a JSON file and generates
|
|
sample requests based on conversation turns.
|
|
"""
|
|
prompt_len: int
|
|
|
|
def __init__(self, **kwargs) -> None:
|
|
super().__init__(**kwargs)
|
|
self.load_data()
|
|
|
|
def load_data(self) -> None:
|
|
if self.dataset_path is None:
|
|
raise ValueError("dataset_path must be provided for loading data.")
|
|
|
|
with open(self.dataset_path, encoding="utf-8") as f:
|
|
self.data = [json.loads(i.strip()) for i in f.readlines()]
|
|
|
|
def sample(
|
|
self,
|
|
num_requests: int,
|
|
lora_path: Optional[str] = None,
|
|
max_loras: Optional[int] = None,
|
|
output_len: Optional[int] = None,
|
|
enable_multimodal_chat: bool = False,
|
|
**kwargs,
|
|
) -> list:
|
|
samples: list = []
|
|
for entry in self.data:
|
|
if len(samples) >= num_requests:
|
|
break
|
|
json_data = entry
|
|
prompt = entry["messages"][-1].get("content", "")
|
|
history_QA = entry.get("messages", [])
|
|
new_output_len = int(entry.get("max_tokens", 12288))
|
|
|
|
if enable_multimodal_chat:
|
|
prompt = self.apply_multimodal_chat_transformation(
|
|
prompt, None)
|
|
samples.append(
|
|
SampleRequest(
|
|
json_data=json_data,
|
|
prompt=prompt,
|
|
prompt_len=0,
|
|
history_QA=history_QA,
|
|
expected_output_len=new_output_len,
|
|
))
|
|
|
|
self.maybe_oversample_requests(samples, num_requests)
|
|
return samples
|
|
|