Files
FastDeploy/fastdeploy/runtime/runtime.cc
DefTruth 434b48dda5 [Serving] Support FastDeploy XPU Triton Server (#1994)
* [patchelf] fix patchelf error for inference xpu

* [serving] add xpu dockerfile and support fd server

* [serving] add xpu dockerfile and support fd server

* [Serving] support XPU + Tritron

* [Serving] support XPU + Tritron

* [Dockerfile] update xpu tritron docker file -> paddle 0.0.0

* [Dockerfile] update xpu tritron docker file -> paddle 0.0.0

* [Dockerfile] update xpu tritron docker file -> paddle 0.0.0

* [Dockerfile] add comments for xpu tritron dockerfile

* [Doruntime] fix xpu infer error

* [Doruntime] fix xpu infer error

* [XPU] update xpu dockerfile

* add xpu triton server docs

* add xpu triton server docs

* add xpu triton server docs

* add xpu triton server docs

* update xpu triton server docs

* update xpu triton server docs

* update xpu triton server docs

* update xpu triton server docs

* update xpu triton server docs

* update xpu triton server docs

* update xpu triton server docs

* update xpu triton server docs
2023-05-29 14:38:25 +08:00

452 lines
14 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/runtime/runtime.h"
#include "fastdeploy/utils/unique_ptr.h"
#include "fastdeploy/utils/utils.h"
#ifdef ENABLE_ORT_BACKEND
#include "fastdeploy/runtime/backends/ort/ort_backend.h"
#endif
#ifdef ENABLE_TRT_BACKEND
#include "fastdeploy/runtime/backends/tensorrt/trt_backend.h"
#endif
#ifdef ENABLE_PADDLE_BACKEND
#include "fastdeploy/runtime/backends/paddle/paddle_backend.h"
#endif
#ifdef ENABLE_POROS_BACKEND
#include "fastdeploy/runtime/backends/poros/poros_backend.h"
#endif
#ifdef ENABLE_OPENVINO_BACKEND
#include "fastdeploy/runtime/backends/openvino/ov_backend.h"
#endif
#ifdef ENABLE_LITE_BACKEND
#include "fastdeploy/runtime/backends/lite/lite_backend.h"
#endif
#ifdef ENABLE_RKNPU2_BACKEND
#include "fastdeploy/runtime/backends/rknpu2/rknpu2_backend.h"
#endif
#ifdef ENABLE_SOPHGO_BACKEND
#include "fastdeploy/runtime/backends/sophgo/sophgo_backend.h"
#endif
#ifdef ENABLE_HORIZON_BACKEND
#include "fastdeploy/runtime/backends/horizon/horizon_backend.h"
#endif
#ifdef ENABLE_TVM_BACKEND
#include "fastdeploy/runtime/backends/tvm/tvm_backend.h"
#endif
namespace fastdeploy {
bool AutoSelectBackend(RuntimeOption& option) {
auto iter0 = s_default_backends_by_format.find(option.model_format);
if (iter0 == s_default_backends_by_format.end()) {
FDERROR << "Cannot found a default backend for model format: "
<< option.model_format
<< ", please define the inference backend in RuntimeOption."
<< std::endl;
return false;
}
auto iter1 = s_default_backends_by_device.find(option.device);
if (iter1 == s_default_backends_by_device.end()) {
FDERROR << "Cannot found a default backend for device: " << option.device
<< ", please define the inference backend in RuntimeOption."
<< std::endl;
return false;
}
std::vector<Backend> candidates;
for (const auto& b0 : iter0->second) {
for (const auto& b1 : iter1->second) {
if (b0 == b1) {
candidates.push_back(b0);
}
}
}
if (candidates.size() == 0) {
FDERROR << "Cannot found availabel inference backends by model format: "
<< option.model_format << " with device: " << option.device
<< std::endl;
return false;
}
for (const auto& b : candidates) {
if (IsBackendAvailable(b)) {
option.backend = b;
FDINFO << "FastDeploy will choose " << b << " to inference this model."
<< std::endl;
return true;
}
}
std::string debug_message = Str(candidates);
FDERROR << "The candiate backends for " << option.model_format << " & "
<< option.device << " are " << debug_message
<< ", but both of them have not been compiled with current "
"FastDeploy yet."
<< std::endl;
return false;
}
bool Runtime::Init(const RuntimeOption& _option) {
option = _option;
// decrypt encrypted model
if ("" != option.encryption_key_) {
#ifdef ENABLE_ENCRYPTION
if (option.model_from_memory_) {
option.model_file = Decrypt(option.model_file, option.encryption_key_);
if (!(option.params_file.empty())) {
option.params_file =
Decrypt(option.params_file, option.encryption_key_);
}
} else {
std::string model_buffer = "";
FDASSERT(ReadBinaryFromFile(option.model_file, &model_buffer),
"Fail to read binary from model file");
option.model_file = Decrypt(model_buffer, option.encryption_key_);
if (!(option.params_file.empty())) {
std::string params_buffer = "";
FDASSERT(ReadBinaryFromFile(option.params_file, &params_buffer),
"Fail to read binary from parameter file");
option.params_file = Decrypt(params_buffer, option.encryption_key_);
}
option.model_from_memory_ = true;
}
#else
FDERROR << "The FastDeploy didn't compile with encryption function."
<< std::endl;
#endif
}
// Choose default backend by model format and device if backend is not
// specified
if (option.backend == Backend::UNKNOWN) {
if (!AutoSelectBackend(option)) {
return false;
}
}
if (option.backend == Backend::ORT) {
CreateOrtBackend();
} else if (option.backend == Backend::TRT) {
CreateTrtBackend();
} else if (option.backend == Backend::PDINFER) {
CreatePaddleBackend();
} else if (option.backend == Backend::OPENVINO) {
CreateOpenVINOBackend();
} else if (option.backend == Backend::LITE) {
CreateLiteBackend();
} else if (option.backend == Backend::RKNPU2) {
CreateRKNPU2Backend();
} else if (option.backend == Backend::SOPHGOTPU) {
CreateSophgoNPUBackend();
} else if (option.backend == Backend::POROS) {
CreatePorosBackend();
} else if (option.backend == Backend::HORIZONNPU) {
CreateHorizonBackend();
} else if (option.backend == Backend::TVM) {
CreateTVMBackend();
} else {
std::string msg = Str(GetAvailableBackends());
FDERROR << "The compiled FastDeploy only supports " << msg << ", "
<< option.backend << " is not supported now." << std::endl;
return false;
}
backend_->benchmark_option_ = option.benchmark_option;
return true;
}
TensorInfo Runtime::GetInputInfo(int index) {
return backend_->GetInputInfo(index);
}
TensorInfo Runtime::GetOutputInfo(int index) {
return backend_->GetOutputInfo(index);
}
std::vector<TensorInfo> Runtime::GetInputInfos() {
return backend_->GetInputInfos();
}
std::vector<TensorInfo> Runtime::GetOutputInfos() {
return backend_->GetOutputInfos();
}
bool Runtime::Infer(std::vector<FDTensor>& input_tensors,
std::vector<FDTensor>* output_tensors) {
for (auto& tensor : input_tensors) {
FDASSERT(tensor.device_id < 0 || tensor.device_id == option.device_id,
"Device id of input tensor(%d) and runtime(%d) are not same.",
tensor.device_id, option.device_id);
}
return backend_->Infer(input_tensors, output_tensors);
}
bool Runtime::Infer() {
bool result = false;
if (option.device == Device::KUNLUNXIN) {
// FDTensor SetExternalData is not support for Device::KUNLUNXIN
// now, so, we need to set copy_to_fd as 'true'.
result = backend_->Infer(input_tensors_, &output_tensors_, true);
} else {
result = backend_->Infer(input_tensors_, &output_tensors_, false);
}
for (auto& tensor : output_tensors_) {
tensor.device_id = option.device_id;
}
return result;
}
void Runtime::BindInputTensor(const std::string& name, FDTensor& input) {
bool is_exist = false;
for (auto& t : input_tensors_) {
if (t.name == name) {
is_exist = true;
t.SetExternalData(input.shape, input.dtype, input.MutableData(),
input.device, input.device_id);
break;
}
}
if (!is_exist) {
FDTensor new_tensor(name);
new_tensor.SetExternalData(input.shape, input.dtype, input.MutableData(),
input.device, input.device_id);
input_tensors_.emplace_back(std::move(new_tensor));
}
}
void Runtime::BindOutputTensor(const std::string& name, FDTensor& output) {
bool is_exist = false;
for (auto& t : output_tensors_) {
if (t.name == name) {
is_exist = true;
t.SetExternalData(output.shape, output.dtype, output.MutableData(),
output.device, output.device_id);
break;
}
}
if (!is_exist) {
FDTensor new_tensor(name);
new_tensor.SetExternalData(output.shape, output.dtype, output.MutableData(),
output.device, output.device_id);
output_tensors_.emplace_back(std::move(new_tensor));
}
}
FDTensor* Runtime::GetOutputTensor(const std::string& name) {
for (auto& t : output_tensors_) {
if (t.name == name) {
return &t;
}
}
FDWARNING << "The output name [" << name << "] don't exist." << std::endl;
return nullptr;
}
void Runtime::ReleaseModelMemoryBuffer() {
if (option.model_from_memory_) {
option.model_file.clear();
option.model_file.shrink_to_fit();
option.params_file.clear();
option.params_file.shrink_to_fit();
}
}
void Runtime::CreatePaddleBackend() {
#ifdef ENABLE_PADDLE_BACKEND
backend_ = utils::make_unique<PaddleBackend>();
FDASSERT(backend_->Init(option),
"Failed to initialized Paddle Inference backend.");
#else
FDASSERT(false,
"PaddleBackend is not available, please compiled with "
"ENABLE_PADDLE_BACKEND=ON.");
#endif
FDINFO << "Runtime initialized with Backend::PDINFER in " << option.device
<< "." << std::endl;
}
void Runtime::CreateOpenVINOBackend() {
#ifdef ENABLE_OPENVINO_BACKEND
backend_ = utils::make_unique<OpenVINOBackend>();
FDASSERT(backend_->Init(option), "Failed to initialize OpenVINOBackend.");
#else
FDASSERT(false,
"OpenVINOBackend is not available, please compiled with "
"ENABLE_OPENVINO_BACKEND=ON.");
#endif
FDINFO << "Runtime initialized with Backend::OPENVINO in " << option.device
<< "." << std::endl;
}
void Runtime::CreateTVMBackend() {
#ifdef ENABLE_TVM_BACKEND
backend_ = utils::make_unique<TVMBackend>();
FDASSERT(backend_->Init(option), "Failed to initialize TVM backend.");
#else
FDASSERT(false,
"TVMBackend is not available, please compiled with "
"ENABLE_TVM_BACKEND=ON.");
#endif
FDINFO << "Runtime initialized with Backend::TVM in " << option.device << "."
<< std::endl;
}
void Runtime::CreateOrtBackend() {
#ifdef ENABLE_ORT_BACKEND
backend_ = utils::make_unique<OrtBackend>();
FDASSERT(backend_->Init(option), "Failed to initialize Backend::ORT.");
#else
FDASSERT(false,
"OrtBackend is not available, please compiled with "
"ENABLE_ORT_BACKEND=ON.");
#endif
FDINFO << "Runtime initialized with Backend::ORT in " << option.device << "."
<< std::endl;
}
void Runtime::CreateTrtBackend() {
#ifdef ENABLE_TRT_BACKEND
backend_ = utils::make_unique<TrtBackend>();
FDASSERT(backend_->Init(option), "Failed to initialize TensorRT backend.");
#else
FDASSERT(false,
"TrtBackend is not available, please compiled with "
"ENABLE_TRT_BACKEND=ON.");
#endif
FDINFO << "Runtime initialized with Backend::TRT in " << option.device << "."
<< std::endl;
}
void Runtime::CreateLiteBackend() {
#ifdef ENABLE_LITE_BACKEND
backend_ = utils::make_unique<LiteBackend>();
FDASSERT(backend_->Init(option),
"Load model from nb file failed while initializing LiteBackend.");
#else
FDASSERT(false,
"LiteBackend is not available, please compiled with "
"ENABLE_LITE_BACKEND=ON.");
#endif
FDINFO << "Runtime initialized with Backend::PDLITE in " << option.device
<< "." << std::endl;
}
void Runtime::CreateRKNPU2Backend() {
#ifdef ENABLE_RKNPU2_BACKEND
backend_ = utils::make_unique<RKNPU2Backend>();
FDASSERT(backend_->Init(option), "Failed to initialize RKNPU2 backend.");
#else
FDASSERT(false,
"RKNPU2Backend is not available, please compiled with "
"ENABLE_RKNPU2_BACKEND=ON.");
#endif
FDINFO << "Runtime initialized with Backend::RKNPU2 in " << option.device
<< "." << std::endl;
}
void Runtime::CreateHorizonBackend() {
#ifdef ENABLE_HORIZON_BACKEND
backend_ = utils::make_unique<HorizonBackend>();
FDASSERT(backend_->Init(option), "Failed to initialize Horizon backend.");
#else
FDASSERT(false, "HorizonBackend is not available, please compiled with ",
" ENABLE_HORIZON_BACKEND=ON.");
#endif
FDINFO << "Runtime initialized with Backend::HORIZONNPU in " << option.device
<< "." << std::endl;
}
void Runtime::CreateSophgoNPUBackend() {
#ifdef ENABLE_SOPHGO_BACKEND
backend_ = utils::make_unique<SophgoBackend>();
FDASSERT(backend_->Init(option), "Failed to initialize Sophgo backend.");
#else
FDASSERT(false,
"SophgoBackend is not available, please compiled with "
"ENABLE_SOPHGO_BACKEND=ON.");
#endif
FDINFO << "Runtime initialized with Backend::SOPHGO in " << option.device
<< "." << std::endl;
}
Runtime* Runtime::Clone(void* stream, int device_id) {
Runtime* runtime = new Runtime();
if (option.backend != Backend::OPENVINO &&
option.backend != Backend::PDINFER) {
runtime->Init(option);
FDWARNING << "Only OpenVINO/Paddle Inference support \
clone engine to reduce CPU/GPU memory usage now. For "
<< option.backend
<< ", FastDeploy will create a new engine which \
will not share memory with the current runtime."
<< std::endl;
return runtime;
}
FDINFO << "Runtime Clone with Backend:: " << option.backend << " in "
<< option.device << "." << std::endl;
runtime->option = option;
runtime->backend_ = backend_->Clone(option, stream, device_id);
return runtime;
}
void Runtime::CreatePorosBackend() {
#ifdef ENABLE_POROS_BACKEND
backend_ = utils::make_unique<PorosBackend>();
FDASSERT(backend_->Init(option), "Failed to initialize Poros backend.");
#else
FDASSERT(false,
"PorosBackend is not available, please compiled with "
"ENABLE_POROS_BACKEND=ON.");
#endif
FDINFO << "Runtime initialized with Backend::POROS in " << option.device
<< "." << std::endl;
}
// only for poros backend
bool Runtime::Compile(std::vector<std::vector<FDTensor>>& prewarm_tensors) {
#ifdef ENABLE_POROS_BACKEND
option.poros_option.device = option.device;
option.poros_option.device_id = option.device_id;
option.poros_option.enable_fp16 = option.trt_option.enable_fp16;
option.poros_option.max_batch_size = option.trt_option.max_batch_size;
option.poros_option.max_workspace_size = option.trt_option.max_workspace_size;
auto casted_backend = dynamic_cast<PorosBackend*>(backend_.get());
FDASSERT(
casted_backend->Compile(option.model_file, prewarm_tensors,
option.poros_option),
"Load model from Torchscript failed while initliazing PorosBackend.");
#else
FDASSERT(false,
"PorosBackend is not available, please compiled with "
"ENABLE_POROS_BACKEND=ON.");
#endif
return true;
}
} // namespace fastdeploy