Files
FastDeploy/fastdeploy/runtime/backends/rknpu2/rknpu2_backend.h
Zheng-Bicheng b30f62af36 [Backend] Refactoring RKNPU2 Backend code (#1772)
* update rknpu2 runtime

* update rknpu2 runtime

* update rknpu2 runtime

* update for rknpu2 backend

* update for rknpu2 backend

---------

Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
2023-04-13 16:37:36 +08:00

178 lines
5.3 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/core/fd_tensor.h"
#include "fastdeploy/runtime/backends/backend.h"
#include "fastdeploy/runtime/backends/rknpu2/option.h"
#include "rknn_api.h" // NOLINT
#include <cstring>
#include <iostream>
#include <memory>
#include <string>
#include <vector>
namespace fastdeploy {
class RKNPU2Backend : public BaseBackend {
public:
/***************************** BaseBackend API *****************************/
RKNPU2Backend() = default;
virtual ~RKNPU2Backend();
bool Init(const RuntimeOption& runtime_option);
int NumInputs() const override {
return static_cast<int>(inputs_desc_.size());
}
int NumOutputs() const override {
return static_cast<int>(outputs_desc_.size());
}
TensorInfo GetInputInfo(int index) override;
TensorInfo GetOutputInfo(int index) override;
std::vector<TensorInfo> GetInputInfos() override;
std::vector<TensorInfo> GetOutputInfos() override;
bool Infer(std::vector<FDTensor>& inputs, std::vector<FDTensor>* outputs,
bool copy_to_fd = true) override;
/***************************** BaseBackend API *****************************/
private:
/*
* @name RuntimeOptionIsApplicable
* @brief This function is used to determine whether the RuntimeOption
* meets the operating conditions of RKNPU2.
* @param None
* @return bool
* @note None
*/
bool RuntimeOptionIsApplicable(const RuntimeOption& runtime_option);
/*
* @name LoadModel
* @brief Read the model and initialize rknn context.
* @param model: Binary data for the RKNN model or the path of RKNN model.
* @return bool
* @note None
*/
bool LoadModel(void* model);
/*
* @name GetSDKAndDeviceVersion
* @brief Get RKNPU2 sdk and device version.
* @param None
* @return bool
* @note The private variable ctx must be initialized to use this function.
*/
bool GetSDKAndDeviceVersion();
/*
* @name BuildOption
* @brief Save option and set core mask.
* @param RKNPU2BackendOption
* @note None
*/
void BuildOption(const RKNPU2BackendOption& option);
/*
* @name SetCoreMask
* @brief Set NPU core for model
* @param core_mask: The specification of NPU core setting.
* @return bool
* @note Only support RK3588
*/
bool SetCoreMask(const rknpu2::CoreMask& core_mask) const;
/*
* @name InitInputAndOutputNumber
* @brief Initialize io_num_.
* @param
* @return bool
* @note The private variable ctx must be initialized to use this function.
*/
bool InitInputAndOutputNumber();
/*
* @name InitRKNNTensorAddress
* @brief Allocate memory for input_attrs_ and output_attrs_.
* @param None
* @return bool
* @note None
*/
bool InitRKNNTensorAddress();
/*
* @name InitInputAndOutputInformation
* @brief Initialize inputs_desc_ and outputs_desc_.
* @param None
* @return bool
* @note None
*/
bool InitInputAndOutputInformation();
/*
* @name InitRKNNTensorMemory
* @brief Allocate memory for input and output tensors.
* @param std::vector<FDTensor>& inputs
* @return None
* @note None
*/
bool InitRKNNTensorMemory(std::vector<FDTensor>& inputs);
rknn_context ctx_{};
rknn_sdk_version sdk_ver_{};
rknn_input_output_num io_num_{0, 0};
std::vector<TensorInfo> inputs_desc_;
std::vector<TensorInfo> outputs_desc_;
rknn_tensor_attr* input_attrs_ = nullptr;
rknn_tensor_attr* output_attrs_ = nullptr;
std::vector<rknn_tensor_mem*> input_mems_;
std::vector<rknn_tensor_mem*> output_mems_;
bool io_num_init_ = false;
bool tensor_attrs_init_ = false;
bool tensor_memory_init_ = false;
RKNPU2BackendOption option_;
/*
* @name DumpTensorAttr
* @brief Get the model's detailed inputs and outputs
* @param rknn_tensor_attr
* @return None
* @note None
*/
void DumpTensorAttr(rknn_tensor_attr& attr);
/*
* @name RknnTensorTypeToFDDataType
* @brief Change RknnTensorType To FDDataType
* @param rknn_tensor_type
* @return None
* @note Most post-processing does not support the fp16 format.
* Therefore, if the input is FP16, the output will be FP32.
*/
FDDataType RknnTensorTypeToFDDataType(rknn_tensor_type type);
/*
* @name FDDataTypeToRknnTensorType
* @brief Change FDDataType To RknnTensorType
* @param FDDataType
* @return None
* @note None
*/
rknn_tensor_type FDDataTypeToRknnTensorType(FDDataType type);
};
} // namespace fastdeploy