mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-07 09:31:35 +08:00

Update rknpu2_backend.cc Signed-off-by: JugendTraum <443248173@qq.com> Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
595 lines
18 KiB
C++
595 lines
18 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
#include "fastdeploy/runtime/backends/rknpu2/rknpu2_backend.h"
|
|
namespace fastdeploy {
|
|
RKNPU2Backend::~RKNPU2Backend() {
|
|
if (tensor_attrs_init_) {
|
|
if (input_attrs_ != nullptr) {
|
|
free(input_attrs_);
|
|
}
|
|
|
|
if (output_attrs_ != nullptr) {
|
|
free(output_attrs_);
|
|
}
|
|
}
|
|
|
|
if (tensor_memory_init_) {
|
|
for (uint32_t i = 0; i < io_num_.n_input; i++) {
|
|
rknn_destroy_mem(ctx_, input_mems_[i]);
|
|
}
|
|
|
|
for (uint32_t i = 0; i < io_num_.n_output; i++) {
|
|
rknn_destroy_mem(ctx_, output_mems_[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* @name RuntimeOptionIsApplicable
|
|
* @brief This function is used to determine whether the RuntimeOption
|
|
* meets the operating conditions of RKNPU2.
|
|
* @param None
|
|
* @return bool
|
|
* @note None
|
|
*/
|
|
bool RKNPU2Backend::RuntimeOptionIsApplicable(
|
|
const RuntimeOption& runtime_option) {
|
|
if (!Supported(runtime_option.model_format, Backend::RKNPU2)) {
|
|
FDERROR << "The model format is not supported for RKNPU2." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
if (!Supported(runtime_option.device, Backend::RKNPU2)) {
|
|
FDERROR << "The device is not supported for RKNPU2." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
if (runtime_option.model_from_memory_) {
|
|
FDERROR << "RKNPU2 backend doesn't support load model from memory, please "
|
|
"load model from disk."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* @name GetSDKAndDeviceVersion
|
|
* @brief Get RKNPU2 sdk and device version.
|
|
* @param None
|
|
* @return bool
|
|
* @note The private variable ctx_ must be initialized.
|
|
*/
|
|
bool RKNPU2Backend::GetSDKAndDeviceVersion() {
|
|
int ret;
|
|
ret = rknn_query(ctx_, RKNN_QUERY_SDK_VERSION, &sdk_ver_, sizeof(sdk_ver_));
|
|
if (ret != RKNN_SUCC) {
|
|
FDERROR << "The function(rknn_query) failed! ret=" << ret << std::endl;
|
|
return false;
|
|
}
|
|
FDINFO << "rknpu2 runtime version: " << sdk_ver_.api_version << std::endl;
|
|
FDINFO << "rknpu2 driver version: " << sdk_ver_.drv_version << std::endl;
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* @name BuildOption
|
|
* @brief Save option and set core mask.
|
|
* @param RKNPU2BackendOption
|
|
* @note None
|
|
*/
|
|
void RKNPU2Backend::BuildOption(const RKNPU2BackendOption& option) {
|
|
option_ = option;
|
|
|
|
// save cpu_name
|
|
option_.cpu_name = option.cpu_name;
|
|
|
|
// save context
|
|
option_.core_mask = option.core_mask;
|
|
|
|
// set core mask
|
|
if (option_.cpu_name == rknpu2::CpuName::RK3588) {
|
|
if (!SetCoreMask(option_.core_mask)) {
|
|
FDERROR << "set core mask failed" << std::endl;
|
|
}
|
|
}
|
|
}
|
|
|
|
/***************************************************************
|
|
* @name Init
|
|
* @brief Initialize RKNN model
|
|
* @param model_file: Binary data for the RKNN model or the path of RKNN
|
|
* @return bool
|
|
* @note None
|
|
***************************************************************/
|
|
bool RKNPU2Backend::Init(const RuntimeOption& runtime_option) {
|
|
if (!RuntimeOptionIsApplicable(runtime_option)) {
|
|
FDERROR << "Runtime option is not applicable." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
if (!LoadModel((char*)runtime_option.model_file.data())) {
|
|
FDERROR << "Load model failed" << std::endl;
|
|
return false;
|
|
}
|
|
|
|
if (!InitInputAndOutputNumber()) {
|
|
FDERROR << "Init input and output number failed" << std::endl;
|
|
return false;
|
|
}
|
|
|
|
if (!GetSDKAndDeviceVersion()) {
|
|
FDERROR << "Get SDK and device version failed" << std::endl;
|
|
return false;
|
|
}
|
|
|
|
BuildOption(runtime_option.rknpu2_option);
|
|
|
|
if (!InitInputAndOutputInformation()) {
|
|
FDERROR << "Get model input output information failed" << std::endl;
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* @name SetCoreMask
|
|
* @brief Set NPU core for model
|
|
* @param core_mask: The specification of NPU core setting.
|
|
* @return bool
|
|
* @note Only support RK3588
|
|
*/
|
|
bool RKNPU2Backend::SetCoreMask(const rknpu2::CoreMask& core_mask) const {
|
|
if (option_.cpu_name != rknpu2::CpuName::RK3588) {
|
|
FDINFO << "SetCoreMask only support when soc is RK3588." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
int ret = rknn_set_core_mask(ctx_, static_cast<rknn_core_mask>(core_mask));
|
|
if (ret != RKNN_SUCC) {
|
|
FDERROR << "The function(rknn_set_core_mask) failed! ret=" << ret
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* @name LoadModel
|
|
* @brief Read the model and initialize rknn context.
|
|
* @param model: Binary data for the RKNN model or the path of RKNN model.
|
|
* @return bool
|
|
* @note None
|
|
*/
|
|
bool RKNPU2Backend::LoadModel(void* model) {
|
|
int ret = RKNN_SUCC;
|
|
ret = rknn_init(&ctx_, model, 0, 0, nullptr);
|
|
if (ret != RKNN_SUCC) {
|
|
FDERROR << "The function(rknn_init) failed! ret=" << ret << std::endl;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* @name InitInputAndOutputNumber
|
|
* @brief Initialize io_num_.
|
|
* @param
|
|
* @return bool
|
|
* @note The private variable ctx must be initialized to use this
|
|
* function.
|
|
*/
|
|
bool RKNPU2Backend::InitInputAndOutputNumber() {
|
|
if (io_num_init_) {
|
|
FDERROR << "The private variable io_num_ has been initialized."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
int ret = RKNN_SUCC;
|
|
ret = rknn_query(ctx_, RKNN_QUERY_IN_OUT_NUM, &io_num_, sizeof(io_num_));
|
|
if (ret != RKNN_SUCC) {
|
|
FDERROR << "The function(rknn_query) failed! ret=" << ret << std::endl;
|
|
return false;
|
|
}
|
|
io_num_init_ = true;
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* @name InitRKNNTensorAddress
|
|
* @brief Allocate memory for input_attrs_ and output_attrs_.
|
|
* @param None
|
|
* @return bool
|
|
* @note None
|
|
*/
|
|
bool RKNPU2Backend::InitRKNNTensorAddress() {
|
|
if (tensor_attrs_init_) {
|
|
FDERROR << "Private variable input_attrs_ and output_attrs_ memory has "
|
|
"been allocated. Please do not allocate memory repeatedly or "
|
|
"memory leak may occur."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
|
|
if (!io_num_init_) {
|
|
InitInputAndOutputNumber();
|
|
}
|
|
|
|
if (io_num_.n_input == 0) {
|
|
FDERROR << "The number of input tensors is 0." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
if (io_num_.n_output == 0) {
|
|
FDERROR << "The number of output tensors is 0." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
// Allocate memory for private variable input_attrs_.
|
|
input_attrs_ =
|
|
(rknn_tensor_attr*)malloc(sizeof(rknn_tensor_attr) * io_num_.n_input);
|
|
memset(input_attrs_, 0, io_num_.n_input * sizeof(rknn_tensor_attr));
|
|
for (uint32_t i = 0; i < io_num_.n_input; i++) {
|
|
int ret = RKNN_SUCC;
|
|
input_attrs_[i].index = i;
|
|
ret = rknn_query(ctx_, RKNN_QUERY_INPUT_ATTR, &(input_attrs_[i]),
|
|
sizeof(rknn_tensor_attr));
|
|
|
|
if (ret != RKNN_SUCC) {
|
|
FDERROR << "The function(rknn_query) failed! ret=" << ret << std::endl;
|
|
return false;
|
|
}
|
|
|
|
if ((input_attrs_[i].fmt != RKNN_TENSOR_NHWC) &&
|
|
(input_attrs_[i].fmt != RKNN_TENSOR_UNDEFINED)) {
|
|
FDERROR << "rknpu2_backend only support input format is NHWC or UNDEFINED"
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
|
|
DumpTensorAttr(input_attrs_[i]);
|
|
}
|
|
|
|
// Allocate memory for private variable output_attrs_.
|
|
output_attrs_ =
|
|
(rknn_tensor_attr*)malloc(sizeof(rknn_tensor_attr) * io_num_.n_output);
|
|
memset(output_attrs_, 0, io_num_.n_output * sizeof(rknn_tensor_attr));
|
|
for (uint32_t i = 0; i < io_num_.n_output; i++) {
|
|
int ret = RKNN_SUCC;
|
|
output_attrs_[i].index = i;
|
|
ret = rknn_query(ctx_, RKNN_QUERY_OUTPUT_ATTR, &(output_attrs_[i]),
|
|
sizeof(rknn_tensor_attr));
|
|
|
|
if (ret != RKNN_SUCC) {
|
|
FDERROR << "The function(rknn_query) failed! ret=" << ret << std::endl;
|
|
return false;
|
|
}
|
|
|
|
// FastDeploy Only support postprocess when output type is fp32,
|
|
// so output_attrs_.type needs to be fixed as RKNN_TENSOR_FLOAT32.
|
|
output_attrs_[i].type = RKNN_TENSOR_FLOAT32;
|
|
DumpTensorAttr(output_attrs_[i]);
|
|
}
|
|
tensor_attrs_init_ = true;
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* @name InitInputAndOutputInformation
|
|
* @brief Get the detailed input and output information of Model
|
|
* @param None
|
|
* @return bool
|
|
* @note None
|
|
*/
|
|
bool RKNPU2Backend::InitInputAndOutputInformation() {
|
|
if (!io_num_init_) {
|
|
InitInputAndOutputNumber();
|
|
}
|
|
|
|
if (!tensor_attrs_init_) {
|
|
InitRKNNTensorAddress();
|
|
}
|
|
|
|
if (io_num_.n_input == 0) {
|
|
FDERROR << "The number of input tensors is 0." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
if (io_num_.n_output == 0) {
|
|
FDERROR << "The number of output tensors is 0." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
inputs_desc_.resize(io_num_.n_input);
|
|
outputs_desc_.resize(io_num_.n_output);
|
|
|
|
// Get input info and copy to input tensor info
|
|
for (uint32_t i = 0; i < io_num_.n_input; i++) {
|
|
// Copy input_attrs_ to input tensor info
|
|
std::string temp_name = input_attrs_[i].name;
|
|
std::vector<int> temp_shape{};
|
|
temp_shape.resize(input_attrs_[i].n_dims);
|
|
for (int j = 0; j < input_attrs_[i].n_dims; j++) {
|
|
temp_shape[j] = (int)input_attrs_[i].dims[j];
|
|
}
|
|
FDDataType temp_dtype =
|
|
fastdeploy::RKNPU2Backend::RknnTensorTypeToFDDataType(
|
|
input_attrs_[i].type);
|
|
TensorInfo temp_input_info = {temp_name, temp_shape, temp_dtype};
|
|
inputs_desc_[i] = temp_input_info;
|
|
}
|
|
|
|
for (uint32_t i = 0; i < io_num_.n_output; i++) {
|
|
// If the output dimension is 3, the runtime will automatically change it
|
|
// to 4. Obviously, this is wrong, and manual correction is required here.
|
|
int n_dims = static_cast<int>(output_attrs_[i].n_dims);
|
|
if ((n_dims == 4) && (output_attrs_[i].dims[3] == 1)) {
|
|
n_dims--;
|
|
}
|
|
|
|
// Copy output_attrs_ to output tensor
|
|
std::string temp_name = output_attrs_[i].name;
|
|
std::vector<int> temp_shape{};
|
|
temp_shape.resize(n_dims);
|
|
for (int j = 0; j < n_dims; j++) {
|
|
temp_shape[j] = (int)output_attrs_[i].dims[j];
|
|
}
|
|
|
|
// The data type of output data is changed to FP32
|
|
FDDataType temp_dtype = FDDataType::FP32;
|
|
TensorInfo temp_input_info = {temp_name, temp_shape, temp_dtype};
|
|
outputs_desc_[i] = temp_input_info;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* @name DumpTensorAttr
|
|
* @brief Get the model's detailed inputs and outputs
|
|
* @param rknn_tensor_attr
|
|
* @return None
|
|
* @note None
|
|
*/
|
|
void RKNPU2Backend::DumpTensorAttr(rknn_tensor_attr& attr) {
|
|
printf(
|
|
"index=%d, name=%s, n_dims=%d, dims=[%d, %d, %d, %d], "
|
|
"n_elems=%d, size=%d, fmt=%s, type=%s, "
|
|
"qnt_type=%s, zp=%d, scale=%f, pass_through=%d\n",
|
|
attr.index, attr.name, attr.n_dims, attr.dims[0], attr.dims[1],
|
|
attr.dims[2], attr.dims[3], attr.n_elems, attr.size,
|
|
get_format_string(attr.fmt), get_type_string(attr.type),
|
|
get_qnt_type_string(attr.qnt_type), attr.zp, attr.scale,
|
|
attr.pass_through);
|
|
}
|
|
|
|
TensorInfo RKNPU2Backend::GetInputInfo(int index) {
|
|
FDASSERT(index < NumInputs(),
|
|
"The index: %d should less than the number of inputs: %d.", index,
|
|
NumInputs())
|
|
return inputs_desc_[index];
|
|
}
|
|
|
|
std::vector<TensorInfo> RKNPU2Backend::GetInputInfos() { return inputs_desc_; }
|
|
|
|
TensorInfo RKNPU2Backend::GetOutputInfo(int index) {
|
|
FDASSERT(index < NumOutputs(),
|
|
"The index: %d should less than the number of outputs %d.", index,
|
|
NumOutputs())
|
|
return outputs_desc_[index];
|
|
}
|
|
|
|
std::vector<TensorInfo> RKNPU2Backend::GetOutputInfos() {
|
|
return outputs_desc_;
|
|
}
|
|
|
|
/*
|
|
* @name InitRKNNTensorMemory
|
|
* @brief Allocate memory for input and output tensors.
|
|
* @param std::vector<FDTensor>& inputs
|
|
* @return None
|
|
* @note None
|
|
*/
|
|
bool RKNPU2Backend::InitRKNNTensorMemory(std::vector<FDTensor>& inputs) {
|
|
if (tensor_memory_init_) {
|
|
FDERROR << "Private variable input_mems_ and output_mems_ memory has "
|
|
"been allocated. Please do not allocate memory repeatedly or "
|
|
"memory leak may occur."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
int ret = RKNN_SUCC;
|
|
input_mems_.resize(io_num_.n_input);
|
|
output_mems_.resize(io_num_.n_output);
|
|
for (uint32_t i = 0; i < io_num_.n_input; i++) {
|
|
// Judge whether the input and output types are the same
|
|
rknn_tensor_type input_type =
|
|
fastdeploy::RKNPU2Backend::FDDataTypeToRknnTensorType(inputs[i].dtype);
|
|
if (input_type != input_attrs_[i].type) {
|
|
FDWARNING << "The input tensor type != model's inputs type."
|
|
<< "The input_type need "
|
|
<< get_type_string(input_attrs_[i].type) << ",but inputs[" << i
|
|
<< "].type is " << get_type_string(input_type) << std::endl;
|
|
}
|
|
|
|
// Create input tensor memory
|
|
input_attrs_[i].type = input_type;
|
|
input_attrs_[i].size = inputs[i].Nbytes();
|
|
input_attrs_[i].size_with_stride = inputs[i].Nbytes();
|
|
|
|
input_mems_[i] = rknn_create_mem(ctx_, inputs[i].Nbytes());
|
|
if (input_mems_[i] == nullptr) {
|
|
FDERROR << "The function(rknn_create_mem) failed! ret=" << ret
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
|
|
// Set input tensor memory
|
|
ret = rknn_set_io_mem(ctx_, input_mems_[i], &input_attrs_[i]);
|
|
if (ret != RKNN_SUCC) {
|
|
FDERROR << "The function(rknn_set_io_mem) failed! ret=" << ret
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
for (uint32_t i = 0; i < io_num_.n_output; ++i) {
|
|
// Most post-processing does not support the fp16 format.
|
|
uint32_t output_size = output_attrs_[i].n_elems * sizeof(float);
|
|
output_mems_[i] = rknn_create_mem(ctx_, output_size);
|
|
if (output_mems_[i] == nullptr) {
|
|
FDERROR << "The function(rknn_create_mem) failed! ret=" << ret
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
|
|
// Set output tensor memory
|
|
ret = rknn_set_io_mem(ctx_, output_mems_[i], &output_attrs_[i]);
|
|
if (ret != RKNN_SUCC) {
|
|
FDERROR << "The function(rknn_set_io_mem) failed! ret=" << ret
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
tensor_memory_init_ = true;
|
|
return true;
|
|
}
|
|
|
|
bool RKNPU2Backend::Infer(std::vector<FDTensor>& inputs,
|
|
std::vector<FDTensor>* outputs, bool copy_to_fd) {
|
|
if (!tensor_memory_init_) {
|
|
if (!InitRKNNTensorMemory(inputs)) {
|
|
FDERROR << "Init tensor memory failed." << std::endl;
|
|
}
|
|
}
|
|
|
|
int ret = RKNN_SUCC;
|
|
// Judge whether the input and output size are the same
|
|
if (inputs.size() != inputs_desc_.size()) {
|
|
FDERROR << "[RKNPU2Backend] Size of the inputs(" << inputs.size()
|
|
<< ") should keep same with the inputs of this model("
|
|
<< inputs_desc_.size() << ")." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
// Copy input data to input tensor memory
|
|
for (uint32_t i = 0; i < io_num_.n_input; i++) {
|
|
uint32_t width = input_attrs_[i].dims[2];
|
|
uint32_t stride = input_attrs_[i].w_stride;
|
|
if (width == stride) {
|
|
if (inputs[i].Data() == nullptr) {
|
|
FDERROR << "inputs[0].Data is NULL." << std::endl;
|
|
return false;
|
|
}
|
|
memcpy(input_mems_[i]->virt_addr, inputs[i].Data(), inputs[i].Nbytes());
|
|
} else {
|
|
FDERROR << "[RKNPU2Backend] only support width == stride." << std::endl;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// run rknn
|
|
ret = rknn_run(ctx_, nullptr);
|
|
if (ret != RKNN_SUCC) {
|
|
FDERROR << "rknn run error! ret=" << ret << std::endl;
|
|
return false;
|
|
}
|
|
|
|
// get result
|
|
outputs->resize(outputs_desc_.size());
|
|
std::vector<int64_t> temp_shape(4);
|
|
for (size_t i = 0; i < outputs_desc_.size(); ++i) {
|
|
temp_shape.resize(outputs_desc_[i].shape.size());
|
|
for (int j = 0; j < outputs_desc_[i].shape.size(); ++j) {
|
|
temp_shape[j] = outputs_desc_[i].shape[j];
|
|
}
|
|
(*outputs)[i].Resize(temp_shape, outputs_desc_[i].dtype,
|
|
outputs_desc_[i].name);
|
|
memcpy((*outputs)[i].MutableData(), (float*)output_mems_[i]->virt_addr,
|
|
(*outputs)[i].Nbytes());
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* @name RknnTensorTypeToFDDataType
|
|
* @brief Change RknnTensorType To FDDataType
|
|
* @param rknn_tensor_type
|
|
* @return None
|
|
* @note Most post-processing does not support the fp16 format.
|
|
* Therefore, if the input is FP16, the output will be FP32.
|
|
*/
|
|
FDDataType RKNPU2Backend::RknnTensorTypeToFDDataType(rknn_tensor_type type) {
|
|
if (type == rknn_tensor_type::RKNN_TENSOR_FLOAT16) {
|
|
return FDDataType::FP32;
|
|
}
|
|
if (type == rknn_tensor_type::RKNN_TENSOR_FLOAT32) {
|
|
return FDDataType::FP32;
|
|
}
|
|
if (type == rknn_tensor_type::RKNN_TENSOR_INT8) {
|
|
return FDDataType::INT8;
|
|
}
|
|
if (type == rknn_tensor_type::RKNN_TENSOR_INT16) {
|
|
return FDDataType::INT16;
|
|
}
|
|
if (type == rknn_tensor_type::RKNN_TENSOR_INT32) {
|
|
return FDDataType::INT32;
|
|
}
|
|
if (type == rknn_tensor_type::RKNN_TENSOR_UINT8) {
|
|
return FDDataType::UINT8;
|
|
}
|
|
if (type == rknn_tensor_type::RKNN_TENSOR_BOOL) {
|
|
return FDDataType::BOOL;
|
|
}
|
|
FDERROR << "FDDataType don't support this type" << std::endl;
|
|
return FDDataType::UNKNOWN1;
|
|
}
|
|
|
|
/*
|
|
* @name FDDataTypeToRknnTensorType
|
|
* @brief Change FDDataType To RknnTensorType
|
|
* @param FDDataType
|
|
* @return None
|
|
* @note None
|
|
*/
|
|
rknn_tensor_type RKNPU2Backend::FDDataTypeToRknnTensorType(
|
|
fastdeploy::FDDataType type) {
|
|
if (type == FDDataType::FP16) {
|
|
return rknn_tensor_type::RKNN_TENSOR_FLOAT16;
|
|
}
|
|
if (type == FDDataType::FP32) {
|
|
return rknn_tensor_type::RKNN_TENSOR_FLOAT32;
|
|
}
|
|
if (type == FDDataType::INT8) {
|
|
return rknn_tensor_type::RKNN_TENSOR_INT8;
|
|
}
|
|
if (type == FDDataType::INT16) {
|
|
return rknn_tensor_type::RKNN_TENSOR_INT16;
|
|
}
|
|
if (type == FDDataType::INT32) {
|
|
return rknn_tensor_type::RKNN_TENSOR_INT32;
|
|
}
|
|
if (type == FDDataType::UINT8) {
|
|
return rknn_tensor_type::RKNN_TENSOR_UINT8;
|
|
}
|
|
if (type == FDDataType::BOOL) {
|
|
return rknn_tensor_type::RKNN_TENSOR_BOOL;
|
|
}
|
|
FDERROR << "rknn_tensor_type don't support this type" << std::endl;
|
|
return RKNN_TENSOR_TYPE_MAX;
|
|
}
|
|
} // namespace fastdeploy
|