Files
FastDeploy/fastdeploy/runtime/backends/ort/ops/multiclass_nms.cc
Horror Proton 7191d2da20 [Backend] Remove deprecated ort api (#2034)
* [Backend] Remove deprecated ort api

`Ort::CustomOpApi` deprecated in ONNXRuntime 1.15

fix https://github.com/PaddlePaddle/FastDeploy/issues/2033

* Improve compatibly with ort older than 1.14

* Update fastdeploy/runtime/backends/ort/ops/multiclass_nms.cc

Co-authored-by: Horror Proton <107091537+horror-proton@users.noreply.github.com>

* Fix double free and wrong attrib type in ort/ops

---------

Co-authored-by: Jason <928090362@qq.com>
2023-06-15 21:35:58 +08:00

288 lines
11 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef NON_64_PLATFORM
#include "fastdeploy/runtime/backends/ort/ops/multiclass_nms.h"
#include <algorithm>
#include "fastdeploy/core/fd_tensor.h"
#include "fastdeploy/utils/utils.h"
namespace fastdeploy {
template <class T>
bool SortScorePairDescend(const std::pair<float, T>& pair1,
const std::pair<float, T>& pair2) {
return pair1.first > pair2.first;
}
void GetMaxScoreIndex(const float* scores, const int& score_size,
const float& threshold, const int& top_k,
std::vector<std::pair<float, int>>* sorted_indices) {
for (size_t i = 0; i < score_size; ++i) {
if (scores[i] > threshold) {
sorted_indices->push_back(std::make_pair(scores[i], i));
}
}
// Sort the score pair according to the scores in descending order
std::stable_sort(sorted_indices->begin(), sorted_indices->end(),
SortScorePairDescend<int>);
// Keep top_k scores if needed.
if (top_k > -1 && top_k < static_cast<int>(sorted_indices->size())) {
sorted_indices->resize(top_k);
}
}
float BBoxArea(const float* box, const bool& normalized) {
if (box[2] < box[0] || box[3] < box[1]) {
// If coordinate values are is invalid
// (e.g. xmax < xmin or ymax < ymin), return 0.
return 0.f;
} else {
const float w = box[2] - box[0];
const float h = box[3] - box[1];
if (normalized) {
return w * h;
} else {
// If coordinate values are not within range [0, 1].
return (w + 1) * (h + 1);
}
}
}
float JaccardOverlap(const float* box1, const float* box2,
const bool& normalized) {
if (box2[0] > box1[2] || box2[2] < box1[0] || box2[1] > box1[3] ||
box2[3] < box1[1]) {
return 0.f;
} else {
const float inter_xmin = std::max(box1[0], box2[0]);
const float inter_ymin = std::max(box1[1], box2[1]);
const float inter_xmax = std::min(box1[2], box2[2]);
const float inter_ymax = std::min(box1[3], box2[3]);
float norm = normalized ? 0.0f : 1.0f;
float inter_w = inter_xmax - inter_xmin + norm;
float inter_h = inter_ymax - inter_ymin + norm;
const float inter_area = inter_w * inter_h;
const float bbox1_area = BBoxArea(box1, normalized);
const float bbox2_area = BBoxArea(box2, normalized);
return inter_area / (bbox1_area + bbox2_area - inter_area);
}
}
void MultiClassNmsKernel::FastNMS(const float* boxes, const float* scores,
const int& num_boxes,
std::vector<int>* keep_indices) {
std::vector<std::pair<float, int>> sorted_indices;
GetMaxScoreIndex(scores, num_boxes, score_threshold, nms_top_k,
&sorted_indices);
float adaptive_threshold = nms_threshold;
while (sorted_indices.size() != 0) {
const int idx = sorted_indices.front().second;
bool keep = true;
for (size_t k = 0; k < keep_indices->size(); ++k) {
if (!keep) {
break;
}
const int kept_idx = (*keep_indices)[k];
float overlap =
JaccardOverlap(boxes + idx * 4, boxes + kept_idx * 4, normalized);
keep = overlap <= adaptive_threshold;
}
if (keep) {
keep_indices->push_back(idx);
}
sorted_indices.erase(sorted_indices.begin());
if (keep && nms_eta<1.0 & adaptive_threshold> 0.5) {
adaptive_threshold *= nms_eta;
}
}
}
int MultiClassNmsKernel::NMSForEachSample(
const float* boxes, const float* scores, int num_boxes, int num_classes,
std::map<int, std::vector<int>>* keep_indices) {
for (int i = 0; i < num_classes; ++i) {
if (i == background_label) {
continue;
}
const float* score_for_class_i = scores + i * num_boxes;
FastNMS(boxes, score_for_class_i, num_boxes, &((*keep_indices)[i]));
}
int num_det = 0;
for (auto iter = keep_indices->begin(); iter != keep_indices->end(); ++iter) {
num_det += iter->second.size();
}
if (keep_top_k > -1 && num_det > keep_top_k) {
std::vector<std::pair<float, std::pair<int, int>>> score_index_pairs;
for (const auto& it : *keep_indices) {
int label = it.first;
const float* current_score = scores + label * num_boxes;
auto& label_indices = it.second;
for (size_t j = 0; j < label_indices.size(); ++j) {
int idx = label_indices[j];
score_index_pairs.push_back(
std::make_pair(current_score[idx], std::make_pair(label, idx)));
}
}
std::stable_sort(score_index_pairs.begin(), score_index_pairs.end(),
SortScorePairDescend<std::pair<int, int>>);
score_index_pairs.resize(keep_top_k);
std::map<int, std::vector<int>> new_indices;
for (size_t j = 0; j < score_index_pairs.size(); ++j) {
int label = score_index_pairs[j].second.first;
int idx = score_index_pairs[j].second.second;
new_indices[label].push_back(idx);
}
new_indices.swap(*keep_indices);
num_det = keep_top_k;
}
return num_det;
}
void MultiClassNmsKernel::Compute(OrtKernelContext* context) {
#if ORT_API_VERSION >= 14
Ort::KernelContext ort_context{context};
Ort::ConstValue boxes = ort_context.GetInput(0);
Ort::ConstValue scores = ort_context.GetInput(1);
#else
Ort::CustomOpApi api{ort_};
Ort::Unowned<const Ort::Value> boxes{
const_cast<OrtValue*>(api.KernelContext_GetInput(context, 0))};
Ort::Unowned<const Ort::Value> scores{
const_cast<OrtValue*>(api.KernelContext_GetInput(context, 1))};
#endif
auto boxes_data = boxes.GetTensorData<float>();
auto scores_data = scores.GetTensorData<float>();
auto boxes_dim = boxes.GetTensorTypeAndShapeInfo().GetShape();
auto scores_dim = scores.GetTensorTypeAndShapeInfo().GetShape();
int score_size = scores_dim.size();
int64_t batch_size = scores_dim[0];
int64_t box_dim = boxes_dim[2];
int64_t out_dim = box_dim + 2;
int num_nmsed_out = 0;
FDASSERT(score_size == 3,
"Require rank of input scores be 3, but now it's %d.", score_size);
FDASSERT(boxes_dim[2] == 4,
"Require the 3-dimension of input boxes be 4, but now it's %ld.",
box_dim);
std::vector<int64_t> out_num_rois_dims = {batch_size};
#if ORT_API_VERSION >= 14
auto out_num_rois = ort_context.GetOutput(2, out_num_rois_dims);
#else
Ort::Unowned<Ort::Value> out_num_rois{api.KernelContext_GetOutput(
context, 2, out_num_rois_dims.data(), out_num_rois_dims.size())};
#endif
int32_t* out_num_rois_data = out_num_rois.GetTensorMutableData<int32_t>();
std::vector<std::map<int, std::vector<int>>> all_indices;
for (size_t i = 0; i < batch_size; ++i) {
std::map<int, std::vector<int>> indices; // indices kept for each class
const float* current_boxes_ptr =
boxes_data + i * boxes_dim[1] * boxes_dim[2];
const float* current_scores_ptr =
scores_data + i * scores_dim[1] * scores_dim[2];
int num = NMSForEachSample(current_boxes_ptr, current_scores_ptr,
boxes_dim[1], scores_dim[1], &indices);
num_nmsed_out += num;
out_num_rois_data[i] = num;
all_indices.emplace_back(indices);
}
std::vector<int64_t> out_box_dims = {num_nmsed_out, 6};
std::vector<int64_t> out_index_dims = {num_nmsed_out, 1};
#if ORT_API_VERSION >= 14
auto out_box = ort_context.GetOutput(0, out_box_dims);
auto out_index = ort_context.GetOutput(1, out_index_dims);
#else
Ort::Unowned<Ort::Value> out_box{api.KernelContext_GetOutput(
context, 0, out_box_dims.data(), out_box_dims.size())};
Ort::Unowned<Ort::Value> out_index{api.KernelContext_GetOutput(
context, 1, out_index_dims.data(), out_index_dims.size())};
#endif
if (num_nmsed_out == 0) {
int32_t* out_num_rois_data = out_num_rois.GetTensorMutableData<int32_t>();
for (size_t i = 0; i < batch_size; ++i) {
out_num_rois_data[i] = 0;
}
return;
}
float* out_box_data = out_box.GetTensorMutableData<float>();
int32_t* out_index_data = out_index.GetTensorMutableData<int32_t>();
int count = 0;
for (size_t i = 0; i < batch_size; ++i) {
const float* current_boxes_ptr =
boxes_data + i * boxes_dim[1] * boxes_dim[2];
const float* current_scores_ptr =
scores_data + i * scores_dim[1] * scores_dim[2];
for (const auto& it : all_indices[i]) {
int label = it.first;
const auto& indices = it.second;
const float* current_scores_class_ptr =
current_scores_ptr + label * scores_dim[2];
for (size_t j = 0; j < indices.size(); ++j) {
int start = count * 6;
out_box_data[start] = label;
out_box_data[start + 1] = current_scores_class_ptr[indices[j]];
out_box_data[start + 2] = current_boxes_ptr[indices[j] * 4];
out_box_data[start + 3] = current_boxes_ptr[indices[j] * 4 + 1];
out_box_data[start + 4] = current_boxes_ptr[indices[j] * 4 + 2];
out_box_data[start + 5] = current_boxes_ptr[indices[j] * 4 + 3];
out_index_data[count] = i * boxes_dim[1] + indices[j];
count += 1;
}
}
}
}
void MultiClassNmsKernel::GetAttribute(const OrtKernelInfo* info) {
#if ORT_API_VERSION >= 14
Ort::ConstKernelInfo ort_info{info};
background_label = ort_info.GetAttribute<int64_t>("background_label");
keep_top_k = ort_info.GetAttribute<int64_t>("keep_top_k");
nms_eta = ort_info.GetAttribute<float>("nms_eta");
nms_threshold = ort_info.GetAttribute<float>("nms_threshold");
nms_top_k = ort_info.GetAttribute<int64_t>("nms_top_k");
normalized = ort_info.GetAttribute<int64_t>("normalized");
score_threshold = ort_info.GetAttribute<float>("score_threshold");
#else
Ort::CustomOpApi api{ort_};
background_label =
api.KernelInfoGetAttribute<int64_t>(info, "background_label");
keep_top_k = api.KernelInfoGetAttribute<int64_t>(info, "keep_top_k");
nms_eta = api.KernelInfoGetAttribute<float>(info, "nms_eta");
nms_threshold = api.KernelInfoGetAttribute<float>(info, "nms_threshold");
nms_top_k = api.KernelInfoGetAttribute<int64_t>(info, "nms_top_k");
normalized = api.KernelInfoGetAttribute<int64_t>(info, "normalized");
score_threshold = api.KernelInfoGetAttribute<float>(info, "score_threshold");
#endif
}
} // namespace fastdeploy
#endif