Files
charl-u cbf88a46fa [Doc]Update English version of some documents (#1083)
* 第一次提交

* 补充一处漏翻译

* deleted:    docs/en/quantize.md

* Update one translation

* Update en version

* Update one translation in code

* Standardize one writing

* Standardize one writing

* Update some en version

* Fix a grammer problem

* Update en version for api/vision result

* Merge branch 'develop' of https://github.com/charl-u/FastDeploy into develop

* Checkout the link in README in vision_results/ to the en documents

* Modify a title

* Add link to serving/docs/

* Finish translation of demo.md

* Update english version of serving/docs/

* Update title of readme

* Update some links

* Modify a title

* Update some links

* Update en version of java android README

* Modify some titles

* Modify some titles

* Modify some titles

* modify article to document

* update some english version of documents in examples

* Add english version of documents in examples/visions

* Sync to current branch

* Add english version of documents in examples

* Add english version of documents in examples

* Add english version of documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples

* Update some documents in examples
2023-01-09 10:08:19 +08:00
..

English | 简体中文

PIPNet Python Deployment Example

Before deployment, two steps require confirmation

This directory provides examples that infer.py fast finishes the deployment of PIPNet on CPU/GPU and GPU accelerated by TensorRT. FastDeploy version 0.7.0 or above is required to support this model. The script is as follows

# Download the example code for deployment
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/examples/vision/facealign/pipnet/python

# Download PIPNet model files, test images and videos
## Original ONNX Model
wget https://bj.bcebos.com/paddlehub/fastdeploy/pipnet_resnet18_10x19x32x256_aflw.onnx
wget https://bj.bcebos.com/paddlehub/fastdeploy/facealign_input.png

# CPU inference
python infer.py --model pipnet_resnet18_10x19x32x256_aflw.onnx --image facealign_input.png --device cpu
# GPU inference
python infer.py --model pipnet_resnet18_10x19x32x256_aflw.onnx --image facealign_input.png --device gpu
# TRT inference
python infer.py --model pipnet_resnet18_10x19x32x256_aflw.onnx --image facealign_input.png --device gpu --backend trt

The visualized result after running is as follows

PIPNet Python Interface

fd.vision.facealign.PIPNet(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)

PIPNet model loading and initialization, among which model_file is the exported ONNX model format.

Parameter

  • model_file(str): Model file path
  • params_file(str): Parameter file path. No need to set when the model is in ONNX format
  • runtime_option(RuntimeOption): Backend inference configuration. None by default, which is the default configuration
  • model_format(ModelFormat): Model format. ONNX format by default

predict function

PIPNet.predict(input_image)

Model prediction interface. Input images and output landmarks results.

Parameter

  • input_image(np.ndarray): Input data in HWC or BGR format

Return

Return fastdeploy.vision.FaceAlignmentResult structure. Refer to Vision Model Prediction Results for the description of the structure.

Other Documents