mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-27 12:52:29 +08:00

* 第一次提交 * 补充一处漏翻译 * deleted: docs/en/quantize.md * Update one translation * Update en version * Update one translation in code * Standardize one writing * Standardize one writing * Update some en version * Fix a grammer problem * Update en version for api/vision result * Merge branch 'develop' of https://github.com/charl-u/FastDeploy into develop * Checkout the link in README in vision_results/ to the en documents * Modify a title * Add link to serving/docs/ * Finish translation of demo.md * Update english version of serving/docs/ * Update title of readme * Update some links * Modify a title * Update some links * Update en version of java android README * Modify some titles * Modify some titles * Modify some titles * modify article to document * update some english version of documents in examples * Add english version of documents in examples/visions * Sync to current branch * Add english version of documents in examples * Add english version of documents in examples * Add english version of documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples
English | 简体中文
PFLD Python Deployment Example
Before deployment, two steps require confirmation
-
- Software and hardware should meet the requirements. Please refer to FastDeploy Environment Requirements
-
- Install FastDeploy Python whl package. Refer to FastDeploy Python Installation
This directory provides examples that infer.py
fast finishes the deployment of PFLD on CPU/GPU and GPU accelerated by TensorRT. FastDeploy version 0.6.0 or above is required to support this model. The script is as follows
# Download deployment example code
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/examples/vision/facealign/pfld/python
# Download the PFLD model files, test images, and videos
## Original ONNX Model
wget https://bj.bcebos.com/paddlehub/fastdeploy/pfld-106-lite.onnx
wget https://bj.bcebos.com/paddlehub/fastdeploy/facealign_input.png
# CPU inference
python infer.py --model pfld-106-lite.onnx --image facealign_input.png --device cpu
# GPU inference
python infer.py --model pfld-106-lite.onnx --image facealign_input.png --device gpu
# TRT inference
python infer.py --model pfld-106-lite.onnx --image facealign_input.png --device gpu --backend trt
The visualized result after running is as follows
PFLD Python Interface
fd.vision.facealign.PFLD(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)
PFLD model loading and initialization, among which model_file is the exported ONNX model format
Parameters
- model_file(str): Model file path
- params_file(str): Parameter file path. No need to set when the model is in ONNX format
- runtime_option(RuntimeOption): Backend inference configuration. None by default, which is the default configuration
- model_format(ModelFormat): Model format. ONNX format by default
predict Parameter
PFLD.predict(input_image)
Model prediction interface. Input images and output landmarks results directly
Parameter
- input_image(np.ndarray): Input data in HWC or BGR format
Return
Return
fastdeploy.vision.FaceAlignmentResult
structure. Refer to Vision Model Prediction Results for the description of the structure.