mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 00:33:03 +08:00

* fix infer.py and README * [Example] Merge Download Paddle Model, Paddle->Onnx->Mlir->Bmodel and inference into infer.py. Modify README.md * modify pp_liteseg sophgo infer.py and README.md * fix PPOCR,PPYOLOE,PICODET,LITESEG sophgo infer.py and README.md * fix memory overflow problem while inferring with sophgo backend * fix memory overflow problem while inferring with sophgo backend --------- Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com> Co-authored-by: xuyizhou <yizhou.xu@sophgo.com>
154 lines
5.7 KiB
Python
154 lines
5.7 KiB
Python
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
import fastdeploy as fd
|
||
import cv2
|
||
import os
|
||
from subprocess import run
|
||
from prepare_npz import prepare
|
||
|
||
def parse_arguments():
|
||
import argparse
|
||
import ast
|
||
parser = argparse.ArgumentParser()
|
||
parser.add_argument(
|
||
"--auto", required=True, help="Auto download, convert, compile and infer if True")
|
||
parser.add_argument(
|
||
"--pp_detect_path", default='/workspace/PaddleDetection', help="Path of PaddleDetection folder")
|
||
parser.add_argument(
|
||
"--model_file", required=True, help="Path of sophgo model.")
|
||
parser.add_argument("--config_file", required=True, help="Path of config.")
|
||
parser.add_argument(
|
||
"--image", type=str, required=True, help="Path of test image file.")
|
||
return parser.parse_args()
|
||
|
||
def export_model(args):
|
||
PPDetection_path = args.pp_detect_path
|
||
export_str = 'python3 tools/export_model.py \
|
||
-c configs/ppyoloe/ppyoloe_crn_s_300e_coco.yml \
|
||
-output_dir=output_inference \
|
||
-o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_crn_s_300e_coco.pdparams'
|
||
cur_path = os.getcwd()
|
||
os.chdir(PPDetection_path)
|
||
print(export_str)
|
||
run(export_str, shell=True)
|
||
cp_str = 'cp -r ./output_inference/ppyoloe_crn_s_300e_coco ' + cur_path
|
||
print(cp_str)
|
||
run(cp_str, shell=True)
|
||
os.chdir(cur_path)
|
||
|
||
def paddle2onnx():
|
||
convert_str = 'paddle2onnx --model_dir ppyoloe_crn_s_300e_coco \
|
||
--model_filename model.pdmodel \
|
||
--params_filename model.pdiparams \
|
||
--save_file ppyoloe_crn_s_300e_coco.onnx \
|
||
--enable_dev_version True'
|
||
print(convert_str)
|
||
run(convert_str, shell=True)
|
||
fix_shape_str = 'python3 -m paddle2onnx.optimize --input_model ppyoloe_crn_s_300e_coco.onnx \
|
||
--output_model ppyoloe_crn_s_300e_coco.onnx \
|
||
--input_shape_dict "{\'image\':[1,3,640,640]}"'
|
||
print(fix_shape_str)
|
||
run(fix_shape_str, shell=True)
|
||
|
||
def mlir_prepare():
|
||
mlir_path = os.getenv("MODEL_ZOO_PATH")
|
||
mlir_path = mlir_path[:-13]
|
||
regression_path = os.path.join(mlir_path, 'regression')
|
||
mv_str_list = ['mkdir ppyoloe',
|
||
'cp -rf ' + os.path.join(regression_path, 'dataset/COCO2017/') + ' ./ppyoloe',
|
||
'cp -rf ' + os.path.join(regression_path, 'image/') + ' ./ppyoloe',
|
||
'cp ppyoloe_crn_s_300e_coco.onnx ./ppyoloe',
|
||
'mkdir ./ppyoloe/workspace']
|
||
for str in mv_str_list:
|
||
print(str)
|
||
run(str, shell=True)
|
||
|
||
def image_prepare():
|
||
img_str = 'wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg'
|
||
if not os.path.exists('000000014439.jpg'):
|
||
print(img_str)
|
||
run(img_str, shell=True)
|
||
prepare('000000014439.jpg', [640, 640])
|
||
cp_npz_str = 'cp ./inputs.npz ./ppyoloe'
|
||
print(cp_npz_str)
|
||
run(cp_npz_str, shell=True)
|
||
|
||
def onnx2mlir():
|
||
transform_str = 'model_transform.py \
|
||
--model_name ppyoloe_crn_s_300e_coco \
|
||
--model_def ../ppyoloe_crn_s_300e_coco.onnx \
|
||
--input_shapes [[1,3,640,640],[1,2]] \
|
||
--keep_aspect_ratio \
|
||
--pixel_format rgb \
|
||
--output_names p2o.Div.1,p2o.Concat.29 \
|
||
--test_input ../inputs.npz \
|
||
--test_result ppyoloe_crn_s_300e_coco_top_outputs.npz \
|
||
--mlir ppyoloe_crn_s_300e_coco.mlir'
|
||
os.chdir('./ppyoloe/workspace')
|
||
print(transform_str)
|
||
run(transform_str, shell=True)
|
||
os.chdir('../../')
|
||
|
||
def mlir2bmodel():
|
||
deploy_str = 'model_deploy.py \
|
||
--mlir ppyoloe_crn_s_300e_coco.mlir \
|
||
--quantize F32 \
|
||
--chip bm1684x \
|
||
--test_input ppyoloe_crn_s_300e_coco_in_f32.npz \
|
||
--test_reference ppyoloe_crn_s_300e_coco_top_outputs.npz \
|
||
--model ppyoloe_crn_s_300e_coco_1684x_f32.bmodel'
|
||
os.chdir('./ppyoloe/workspace')
|
||
print(deploy_str)
|
||
run(deploy_str, shell=True)
|
||
os.chdir('../../')
|
||
|
||
if __name__ == "__main__":
|
||
args = parse_arguments()
|
||
|
||
if args.auto:
|
||
export_model(args)
|
||
paddle2onnx()
|
||
mlir_prepare()
|
||
image_prepare()
|
||
onnx2mlir()
|
||
mlir2bmodel()
|
||
|
||
model_file = './ppyoloe/workspace/ppyoloe_crn_s_300e_coco_1684x_f32.bmodel' if args.auto else args.model_file
|
||
params_file = ""
|
||
config_file = './ppyoloe_crn_s_300e_coco/infer_cfg.yml' if args.auto else args.config_file
|
||
image_file = './000000014439.jpg' if args.auto else args.image
|
||
|
||
# 配置runtime,加载模型
|
||
runtime_option = fd.RuntimeOption()
|
||
runtime_option.use_sophgo()
|
||
|
||
model = fd.vision.detection.PPYOLOE(
|
||
model_file,
|
||
params_file,
|
||
config_file,
|
||
runtime_option=runtime_option,
|
||
model_format=fd.ModelFormat.SOPHGO)
|
||
|
||
model.postprocessor.apply_nms()
|
||
|
||
# 预测图片分割结果
|
||
im = cv2.imread(image_file)
|
||
result = model.predict(im)
|
||
print(result)
|
||
|
||
# 可视化结果
|
||
vis_im = fd.vision.vis_detection(im, result, score_threshold=0.5)
|
||
cv2.imwrite("sophgo_result.jpg", vis_im)
|
||
print("Visualized result save in ./sophgo_result_ppyoloe.jpg")
|