Files
FastDeploy/benchmark/python/benchmark_ppcls.py
WJJ1995 da94fc46cf [Benchmark] Support PaddleClas cpp benchmark (#1324)
* add GPL lisence

* add GPL-3.0 lisence

* add GPL-3.0 lisence

* add GPL-3.0 lisence

* support yolov8

* add pybind for yolov8

* add yolov8 readme

* add cpp benchmark

* add cpu and gpu mem

* public part split

* add runtime mode

* fixed bugs

* add cpu_thread_nums

* deal with comments

* deal with comments

* deal with comments

* rm useless code

* add FASTDEPLOY_DECL

* add FASTDEPLOY_DECL

* fixed for windows

* mv rss to pss

* mv rss to pss

* Update utils.cc

* use thread to collect mem

* Add ResourceUsageMonitor

* rm useless code

* fixed bug

* fixed typo

* update ResourceUsageMonitor

* fixed bug

* fixed bug

* add note for ResourceUsageMonitor

* deal with comments

* add macros

* deal with comments

* deal with comments

* deal with comments

* re-lint

* rm pmap and use mem api

* rm pmap and use mem api

* add mem api

* Add PrintBenchmarkInfo func

* Add PrintBenchmarkInfo func

* Add PrintBenchmarkInfo func

* deal with comments

* fixed enable_paddle_to_trt

* add log for paddle_trt

* support ppcls benchmark

* use new trt option api

* update benchmark info

* simplify benchmark.cc

* simplify benchmark.cc

* deal with comments

---------

Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
2023-02-15 17:25:49 +08:00

329 lines
12 KiB
Python
Executable File

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import fastdeploy as fd
import cv2
import os
import numpy as np
import time
from tqdm import tqdm
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument(
"--model", required=True, help="Path of PaddleClas model.")
parser.add_argument(
"--image", type=str, required=False, help="Path of test image file.")
parser.add_argument(
"--cpu_num_thread",
type=int,
default=8,
help="default number of cpu thread.")
parser.add_argument(
"--device_id", type=int, default=0, help="device(gpu) id")
parser.add_argument(
"--profile_mode",
type=str,
default="runtime",
help="runtime or end2end.")
parser.add_argument(
"--repeat",
required=True,
type=int,
default=1000,
help="number of repeats for profiling.")
parser.add_argument(
"--warmup",
required=True,
type=int,
default=50,
help="number of warmup for profiling.")
parser.add_argument(
"--device",
default="cpu",
help="Type of inference device, support 'cpu' or 'gpu'.")
parser.add_argument(
"--backend",
type=str,
default="default",
help="inference backend, default, ort, ov, trt, paddle, paddle_trt.")
parser.add_argument(
"--enable_trt_fp16",
type=ast.literal_eval,
default=False,
help="whether enable fp16 in trt backend")
parser.add_argument(
"--enable_collect_memory_info",
type=ast.literal_eval,
default=False,
help="whether enable collect memory info")
parser.add_argument(
"--include_h2d_d2h",
type=ast.literal_eval,
default=False,
help="whether run profiling with h2d and d2h")
args = parser.parse_args()
return args
def build_option(args):
option = fd.RuntimeOption()
device = args.device
backend = args.backend
enable_trt_fp16 = args.enable_trt_fp16
if args.profile_mode == "runtime":
option.enable_profiling(args.include_h2d_d2h, args.repeat, args.warmup)
option.set_cpu_thread_num(args.cpu_num_thread)
if device == "gpu":
option.use_gpu()
if backend == "ort":
option.use_ort_backend()
elif backend == "paddle":
option.use_paddle_backend()
elif backend == "ov":
option.use_openvino_backend()
option.set_openvino_device(name="GPU")
# change name and shape for models
option.set_openvino_shape_info({"x": [1, 3, 224, 224]})
elif backend in ["trt", "paddle_trt"]:
option.use_trt_backend()
if backend == "paddle_trt":
option.use_paddle_infer_backend()
option.paddle_infer_option.enable_trt = True
# Set max_batch_size 1 for best performance
option.trt_option.max_batch_size = 1
if enable_trt_fp16:
option.enable_trt_fp16()
elif backend == "default":
return option
else:
raise Exception(
"While inference with GPU, only support default/ort/paddle/trt/paddle_trt now, {} is not supported.".
format(backend))
elif device == "cpu":
if backend == "ort":
option.use_ort_backend()
elif backend == "ov":
option.use_openvino_backend()
elif backend == "paddle":
option.use_paddle_backend()
elif backend == "default":
return option
else:
raise Exception(
"While inference with CPU, only support default/ort/ov/paddle now, {} is not supported.".
format(backend))
else:
raise Exception(
"Only support device CPU/GPU now, {} is not supported.".format(
device))
return option
class StatBase(object):
"""StatBase"""
nvidia_smi_path = "nvidia-smi"
gpu_keys = ('index', 'uuid', 'name', 'timestamp', 'memory.total',
'memory.free', 'memory.used', 'utilization.gpu',
'utilization.memory')
nu_opt = ',nounits'
cpu_keys = ('cpu.util', 'memory.util', 'memory.used')
class Monitor(StatBase):
"""Monitor"""
def __init__(self, use_gpu=False, gpu_id=0, interval=0.1):
self.result = {}
self.gpu_id = gpu_id
self.use_gpu = use_gpu
self.interval = interval
self.cpu_stat_q = multiprocessing.Queue()
def start(self):
cmd = '%s --id=%s --query-gpu=%s --format=csv,noheader%s -lms 50' % (
StatBase.nvidia_smi_path, self.gpu_id, ','.join(StatBase.gpu_keys),
StatBase.nu_opt)
if self.use_gpu:
self.gpu_stat_worker = subprocess.Popen(
cmd,
stderr=subprocess.STDOUT,
stdout=subprocess.PIPE,
shell=True,
close_fds=True,
preexec_fn=os.setsid)
# cpu stat
pid = os.getpid()
self.cpu_stat_worker = multiprocessing.Process(
target=self.cpu_stat_func,
args=(self.cpu_stat_q, pid, self.interval))
self.cpu_stat_worker.start()
def stop(self):
try:
if self.use_gpu:
os.killpg(self.gpu_stat_worker.pid, signal.SIGUSR1)
# os.killpg(p.pid, signal.SIGTERM)
self.cpu_stat_worker.terminate()
self.cpu_stat_worker.join(timeout=0.01)
except Exception as e:
print(e)
return
# gpu
if self.use_gpu:
lines = self.gpu_stat_worker.stdout.readlines()
lines = [
line.strip().decode("utf-8") for line in lines
if line.strip() != ''
]
gpu_info_list = [{
k: v
for k, v in zip(StatBase.gpu_keys, line.split(', '))
} for line in lines]
if len(gpu_info_list) == 0:
return
result = gpu_info_list[0]
for item in gpu_info_list:
for k in item.keys():
if k not in ["name", "uuid", "timestamp"]:
result[k] = max(int(result[k]), int(item[k]))
else:
result[k] = max(result[k], item[k])
self.result['gpu'] = result
# cpu
cpu_result = {}
if self.cpu_stat_q.qsize() > 0:
cpu_result = {
k: v
for k, v in zip(StatBase.cpu_keys, self.cpu_stat_q.get())
}
while not self.cpu_stat_q.empty():
item = {
k: v
for k, v in zip(StatBase.cpu_keys, self.cpu_stat_q.get())
}
for k in StatBase.cpu_keys:
cpu_result[k] = max(cpu_result[k], item[k])
cpu_result['name'] = cpuinfo.get_cpu_info()['brand_raw']
self.result['cpu'] = cpu_result
def output(self):
return self.result
def cpu_stat_func(self, q, pid, interval=0.0):
"""cpu stat function"""
stat_info = psutil.Process(pid)
while True:
# pid = os.getpid()
cpu_util, mem_util, mem_use = stat_info.cpu_percent(
), stat_info.memory_percent(), round(stat_info.memory_info().rss /
1024.0 / 1024.0, 4)
q.put([cpu_util, mem_util, mem_use])
time.sleep(interval)
return
if __name__ == '__main__':
args = parse_arguments()
option = build_option(args)
model_file = os.path.join(args.model, "inference.pdmodel")
params_file = os.path.join(args.model, "inference.pdiparams")
config_file = os.path.join(args.model, "inference_cls.yaml")
gpu_id = args.device_id
enable_collect_memory_info = args.enable_collect_memory_info
dump_result = dict()
cpu_mem = list()
gpu_mem = list()
gpu_util = list()
if args.device == "cpu":
file_path = args.model + "_model_" + args.backend + "_" + \
args.device + "_" + str(args.cpu_num_thread) + ".txt"
else:
if args.enable_trt_fp16:
file_path = args.model + "_model_" + \
args.backend + "_fp16_" + args.device + ".txt"
else:
file_path = args.model + "_model_" + args.backend + "_" + args.device + ".txt"
f = open(file_path, "w")
f.writelines("===={}====: \n".format(os.path.split(file_path)[-1][:-4]))
try:
model = fd.vision.classification.PaddleClasModel(
model_file, params_file, config_file, runtime_option=option)
if enable_collect_memory_info:
import multiprocessing
import subprocess
import psutil
import signal
import cpuinfo
enable_gpu = args.device == "gpu"
monitor = Monitor(enable_gpu, gpu_id)
monitor.start()
im_ori = cv2.imread(args.image)
if args.profile_mode == "runtime":
result = model.predict(im_ori)
profile_time = model.get_profile_time()
dump_result["runtime"] = profile_time * 1000
f.writelines("Runtime(ms): {} \n".format(
str(dump_result["runtime"])))
print("Runtime(ms): {} \n".format(str(dump_result["runtime"])))
else:
# end2end
for i in range(args.warmup):
result = model.predict(im_ori)
start = time.time()
for i in tqdm(range(args.repeat)):
result = model.predict(im_ori)
end = time.time()
dump_result["end2end"] = ((end - start) / args.repeat) * 1000.0
f.writelines("End2End(ms): {} \n".format(
str(dump_result["end2end"])))
print("End2End(ms): {} \n".format(str(dump_result["end2end"])))
if enable_collect_memory_info:
monitor.stop()
mem_info = monitor.output()
dump_result["cpu_rss_mb"] = mem_info['cpu'][
'memory.used'] if 'cpu' in mem_info else 0
dump_result["gpu_rss_mb"] = mem_info['gpu'][
'memory.used'] if 'gpu' in mem_info else 0
dump_result["gpu_util"] = mem_info['gpu'][
'utilization.gpu'] if 'gpu' in mem_info else 0
if enable_collect_memory_info:
f.writelines("cpu_rss_mb: {} \n".format(
str(dump_result["cpu_rss_mb"])))
f.writelines("gpu_rss_mb: {} \n".format(
str(dump_result["gpu_rss_mb"])))
f.writelines("gpu_util: {} \n".format(
str(dump_result["gpu_util"])))
print("cpu_rss_mb: {} \n".format(str(dump_result["cpu_rss_mb"])))
print("gpu_rss_mb: {} \n".format(str(dump_result["gpu_rss_mb"])))
print("gpu_util: {} \n".format(str(dump_result["gpu_util"])))
except Exception as e:
f.writelines("!!!!!Infer Failed\n")
raise e
f.close()