mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-27 12:52:29 +08:00

* 添加paddleclas模型 * 更新README_CN * 更新README_CN * 更新README * update get_model.sh * update get_models.sh * update paddleseg models * update paddle_seg models * update paddle_seg models * modified test resources * update benchmark_gpu_trt.sh * add paddle detection * add paddledetection to benchmark * modified benchmark cmakelists * update benchmark scripts * modified benchmark function calling --------- Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
90 lines
3.5 KiB
C++
Executable File
90 lines
3.5 KiB
C++
Executable File
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "flags.h"
|
|
#include "macros.h"
|
|
#include "option.h"
|
|
|
|
namespace vision = fastdeploy::vision;
|
|
namespace benchmark = fastdeploy::benchmark;
|
|
|
|
DEFINE_bool(no_nms, false, "Whether the model contains nms.");
|
|
|
|
int main(int argc, char* argv[]) {
|
|
#if defined(ENABLE_BENCHMARK) && defined(ENABLE_VISION)
|
|
// Initialization
|
|
auto option = fastdeploy::RuntimeOption();
|
|
if (!CreateRuntimeOption(&option, argc, argv, true)) {
|
|
return -1;
|
|
}
|
|
auto im = cv::imread(FLAGS_image);
|
|
std::unordered_map<std::string, std::string> config_info;
|
|
benchmark::ResultManager::LoadBenchmarkConfig(FLAGS_config_path,
|
|
&config_info);
|
|
std::string model_name, params_name, config_name;
|
|
auto model_format = fastdeploy::ModelFormat::PADDLE;
|
|
if (!UpdateModelResourceName(&model_name, ¶ms_name, &config_name,
|
|
&model_format, config_info)) {
|
|
return -1;
|
|
}
|
|
auto model_file = FLAGS_model + sep + model_name;
|
|
auto params_file = FLAGS_model + sep + params_name;
|
|
auto config_file = FLAGS_model + sep + config_name;
|
|
if (config_info["backend"] == "paddle_trt") {
|
|
option.paddle_infer_option.collect_trt_shape = true;
|
|
}
|
|
if (config_info["backend"] == "paddle_trt" ||
|
|
config_info["backend"] == "trt") {
|
|
option.trt_option.SetShape("image", {1, 3, 640, 640}, {1, 3, 640, 640},
|
|
{1, 3, 640, 640});
|
|
option.trt_option.SetShape("scale_factor", {1, 2}, {1, 2},
|
|
{1, 2});
|
|
}
|
|
auto model_tood = vision::detection::TOOD(
|
|
model_file, params_file, config_file, option, model_format);
|
|
vision::DetectionResult res;
|
|
if (config_info["precision_compare"] == "true") {
|
|
// Run once at least
|
|
model_tood.Predict(im, &res);
|
|
// 1. Test result diff
|
|
std::cout << "=============== Test result diff =================\n";
|
|
// Save result to -> disk.
|
|
std::string det_result_path = "tood_result.txt";
|
|
benchmark::ResultManager::SaveDetectionResult(res, det_result_path);
|
|
// Load result from <- disk.
|
|
vision::DetectionResult res_loaded;
|
|
benchmark::ResultManager::LoadDetectionResult(&res_loaded, det_result_path);
|
|
// Calculate diff between two results.
|
|
auto det_diff =
|
|
benchmark::ResultManager::CalculateDiffStatis(res, res_loaded);
|
|
std::cout << "Boxes diff: mean=" << det_diff.boxes.mean
|
|
<< ", max=" << det_diff.boxes.max
|
|
<< ", min=" << det_diff.boxes.min << std::endl;
|
|
std::cout << "Label_ids diff: mean=" << det_diff.labels.mean
|
|
<< ", max=" << det_diff.labels.max
|
|
<< ", min=" << det_diff.labels.min << std::endl;
|
|
}
|
|
// Run profiling
|
|
if (FLAGS_no_nms) {
|
|
model_tood.GetPostprocessor().ApplyNMS();
|
|
}
|
|
BENCHMARK_MODEL(model_tood, model_tood.Predict(im, &res))
|
|
auto vis_im = vision::VisDetection(im, res);
|
|
cv::imwrite("vis_result.jpg", vis_im);
|
|
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
|
#endif
|
|
|
|
return 0;
|
|
}
|