mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-27 21:02:24 +08:00

* [Model] init pp-structurev2-layout code * [Model] init pp-structurev2-layout code * [Model] init pp-structurev2-layout code * [Model] add structurev2_layout_preprocessor * [PP-StructureV2] add postprocessor and layout detector class * [PP-StructureV2] add postprocessor and layout detector class * [PP-StructureV2] add postprocessor and layout detector class * [PP-StructureV2] add postprocessor and layout detector class * [PP-StructureV2] add postprocessor and layout detector class * [pybind] add pp-structurev2-layout model pybind * [pybind] add pp-structurev2-layout model pybind * [Bug Fix] fixed code style * [examples] add pp-structurev2-layout c++ examples * [PP-StructureV2] add python example and docs * [benchmark] add pp-structurev2-layout benchmark support
93 lines
3.8 KiB
C++
93 lines
3.8 KiB
C++
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "flags.h"
|
|
#include "macros.h"
|
|
#include "option.h"
|
|
|
|
namespace vision = fastdeploy::vision;
|
|
namespace benchmark = fastdeploy::benchmark;
|
|
|
|
int main(int argc, char* argv[]) {
|
|
#if defined(ENABLE_BENCHMARK) && defined(ENABLE_VISION)
|
|
// Initialization
|
|
auto option = fastdeploy::RuntimeOption();
|
|
if (!CreateRuntimeOption(&option, argc, argv, true)) {
|
|
return -1;
|
|
}
|
|
auto im = cv::imread(FLAGS_image);
|
|
std::unordered_map<std::string, std::string> config_info;
|
|
benchmark::ResultManager::LoadBenchmarkConfig(FLAGS_config_path,
|
|
&config_info);
|
|
std::string model_name, params_name, config_name;
|
|
auto model_format = fastdeploy::ModelFormat::PADDLE;
|
|
if (!UpdateModelResourceName(&model_name, ¶ms_name, &config_name,
|
|
&model_format, config_info, false)) {
|
|
return -1;
|
|
}
|
|
|
|
auto model_file = FLAGS_model + sep + model_name;
|
|
auto params_file = FLAGS_model + sep + params_name;
|
|
if (config_info["backend"] == "paddle_trt") {
|
|
option.paddle_infer_option.collect_trt_shape = true;
|
|
}
|
|
if (config_info["backend"] == "paddle_trt" ||
|
|
config_info["backend"] == "trt") {
|
|
option.trt_option.SetShape("image", {1, 3, 800, 608}, {1, 3, 800, 608},
|
|
{1, 3, 800, 608});
|
|
}
|
|
auto layout_model = vision::ocr::StructureV2Layout(model_file, params_file,
|
|
option, model_format);
|
|
// 5 for publaynet, 10 for cdla
|
|
layout_model.GetPostprocessor().SetNumClass(5);
|
|
|
|
vision::DetectionResult res;
|
|
if (config_info["precision_compare"] == "true") {
|
|
// Run once at least
|
|
layout_model.Predict(im, &res);
|
|
// 1. Test result diff
|
|
std::cout << "=============== Test result diff =================\n";
|
|
// Save result to -> disk.
|
|
std::string layout_result_path = "layout_result.txt";
|
|
benchmark::ResultManager::SaveDetectionResult(res, layout_result_path);
|
|
// Load result from <- disk.
|
|
vision::DetectionResult res_loaded;
|
|
benchmark::ResultManager::LoadDetectionResult(&res_loaded,
|
|
layout_result_path);
|
|
// Calculate diff between two results.
|
|
auto det_diff =
|
|
benchmark::ResultManager::CalculateDiffStatis(res, res_loaded);
|
|
std::cout << "Boxes diff: mean=" << det_diff.boxes.mean
|
|
<< ", max=" << det_diff.boxes.max
|
|
<< ", min=" << det_diff.boxes.min << std::endl;
|
|
std::cout << "Label_ids diff: mean=" << det_diff.labels.mean
|
|
<< ", max=" << det_diff.labels.max
|
|
<< ", min=" << det_diff.labels.min << std::endl;
|
|
}
|
|
// Run profiling
|
|
BENCHMARK_MODEL(layout_model, layout_model.Predict(im, &res))
|
|
std::vector<std::string> labels = {"text", "title", "list", "table",
|
|
"figure"};
|
|
if (layout_model.GetPostprocessor().GetNumClass() == 10) {
|
|
labels = {"text", "title", "figure", "figure_caption",
|
|
"table", "table_caption", "header", "footer",
|
|
"reference", "equation"};
|
|
}
|
|
auto vis_im =
|
|
vision::VisDetection(im, res, labels, 0.3, 2, .5f, {255, 0, 0}, 2);
|
|
cv::imwrite("vis_result.jpg", vis_im);
|
|
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
|
#endif
|
|
return 0;
|
|
} |