mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-28 05:12:24 +08:00

* [cmake] add faiss.cmake -> pp-shituv2 * [PP-ShiTuV2] Support PP-ShituV2-Det model * [PP-ShiTuV2] Support PP-ShiTuV2-Det model * [PP-ShiTuV2] Add PPShiTuV2Recognizer c++&python support * [PP-ShiTuV2] Add PPShiTuV2Recognizer c++&python support * [Bug Fix] fix ppshitu_pybind error * [benchmark] Add ppshituv2-det c++ benchmark * [examples] Add PP-ShiTuV2 det & rec examples * [vision] Update vision classification result * [Bug Fix] fix trt shapes setting errors
93 lines
3.7 KiB
C++
93 lines
3.7 KiB
C++
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "flags.h"
|
|
#include "macros.h"
|
|
#include "option.h"
|
|
|
|
namespace vision = fastdeploy::vision;
|
|
namespace benchmark = fastdeploy::benchmark;
|
|
|
|
DEFINE_string(trt_shape, "1,3,224,224:1,3,224,224:1,3,224,224",
|
|
"Set min/opt/max shape for trt/paddle_trt backend."
|
|
"eg:--trt_shape 1,3,224,224:1,3,224,224:1,3,224,224");
|
|
|
|
DEFINE_string(input_name, "x",
|
|
"Set input name for trt/paddle_trt backend."
|
|
"eg:--input_names x");
|
|
|
|
int main(int argc, char* argv[]) {
|
|
#if defined(ENABLE_BENCHMARK) && defined(ENABLE_VISION)
|
|
// Initialization
|
|
auto option = fastdeploy::RuntimeOption();
|
|
if (!CreateRuntimeOption(&option, argc, argv, true)) {
|
|
return -1;
|
|
}
|
|
auto im = cv::imread(FLAGS_image);
|
|
std::unordered_map<std::string, std::string> config_info;
|
|
benchmark::ResultManager::LoadBenchmarkConfig(FLAGS_config_path,
|
|
&config_info);
|
|
// Set max_batch_size 1 for best performance
|
|
if (config_info["backend"] == "paddle_trt") {
|
|
option.trt_option.max_batch_size = 1;
|
|
}
|
|
std::string model_name, params_name, config_name;
|
|
auto model_format = fastdeploy::ModelFormat::PADDLE;
|
|
if (!UpdateModelResourceName(&model_name, ¶ms_name, &config_name,
|
|
&model_format, config_info)) {
|
|
return -1;
|
|
}
|
|
|
|
auto model_file = FLAGS_model + sep + model_name;
|
|
auto params_file = FLAGS_model + sep + params_name;
|
|
auto config_file = FLAGS_model + sep + config_name;
|
|
if (config_info["backend"] == "paddle_trt") {
|
|
option.paddle_infer_option.collect_trt_shape = true;
|
|
}
|
|
if (config_info["backend"] == "paddle_trt" ||
|
|
config_info["backend"] == "trt") {
|
|
std::vector<std::vector<int32_t>> trt_shapes =
|
|
benchmark::ResultManager::GetInputShapes(FLAGS_trt_shape);
|
|
option.trt_option.SetShape(FLAGS_input_name, trt_shapes[0], trt_shapes[1],
|
|
trt_shapes[2]);
|
|
}
|
|
|
|
auto model = vision::classification::PPShiTuV2Recognizer(
|
|
model_file, params_file, config_file, option, model_format);
|
|
vision::ClassifyResult res;
|
|
if (config_info["precision_compare"] == "true") {
|
|
// Run once at least
|
|
model.Predict(im, &res);
|
|
// 1. Test result diff
|
|
std::cout << "=============== Test result diff =================\n";
|
|
// Save result to -> disk.
|
|
std::string cls_result_path = "ppcls_result.txt";
|
|
benchmark::ResultManager::SaveClassifyResult(res, cls_result_path);
|
|
// Load result from <- disk.
|
|
vision::ClassifyResult res_loaded;
|
|
benchmark::ResultManager::LoadClassifyResult(&res_loaded, cls_result_path);
|
|
// Calculate diff between two results.
|
|
auto cls_diff =
|
|
benchmark::ResultManager::CalculateDiffStatis(res, res_loaded);
|
|
std::cout << "Labels diff: mean=" << cls_diff.labels.mean
|
|
<< ", max=" << cls_diff.labels.max
|
|
<< ", min=" << cls_diff.labels.min << std::endl;
|
|
std::cout << "Scores diff: mean=" << cls_diff.scores.mean
|
|
<< ", max=" << cls_diff.scores.max
|
|
<< ", min=" << cls_diff.scores.min << std::endl;
|
|
}
|
|
BENCHMARK_MODEL(model, model.Predict(im, &res))
|
|
#endif
|
|
return 0;
|
|
} |