mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-12-24 13:28:13 +08:00
* llguidance * add requirements_guided_decoding.txt and doc * fix test_guidance_*.py * fix test_guidance_*.py && mv * fix llguidance choice * test_guidance_* * rm lazy loader --------- Co-authored-by: YuBaoku <49938469+EmmonsCurse@users.noreply.github.com>
179 lines
6.4 KiB
Python
179 lines
6.4 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License"
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
import sys
|
|
import unittest
|
|
from unittest.mock import MagicMock, patch
|
|
|
|
from fastdeploy.model_executor.guided_decoding import BackendBase
|
|
|
|
mock_llguidance = MagicMock()
|
|
mock_llguidancehf = MagicMock()
|
|
mock_llguidancetorch = MagicMock()
|
|
mock_torch = MagicMock()
|
|
|
|
setattr(mock_llguidance, "hf", mock_llguidancehf)
|
|
|
|
sys.modules["llguidance"] = mock_llguidance
|
|
sys.modules["llguidance.hf"] = mock_llguidancehf
|
|
sys.modules["llguidance.torch"] = mock_llguidancetorch
|
|
sys.modules["torch"] = mock_torch
|
|
|
|
# Import the module to be tested
|
|
from fastdeploy.model_executor.guided_decoding.guidance_backend import (
|
|
LLGuidanceBackend,
|
|
LLGuidanceProcessor,
|
|
process_for_additional_properties,
|
|
)
|
|
|
|
|
|
class TestProcessForAdditionalProperties(unittest.TestCase):
|
|
def test_process_json_string(self):
|
|
# Test string input
|
|
json_str = '{"type": "object", "properties": {"name": {"type": "string"}}}'
|
|
result = process_for_additional_properties(json_str)
|
|
self.assertFalse(result["additionalProperties"])
|
|
|
|
def test_process_json_dict(self):
|
|
# Test dictionary input
|
|
json_dict = {"type": "object", "properties": {"name": {"type": "string"}}}
|
|
result = process_for_additional_properties(json_dict)
|
|
self.assertFalse(result["additionalProperties"])
|
|
# Ensure the original dictionary is not modified
|
|
self.assertNotIn("additionalProperties", json_dict)
|
|
|
|
def test_nested_objects(self):
|
|
# Test nested objects
|
|
json_dict = {
|
|
"type": "object",
|
|
"properties": {"person": {"type": "object", "properties": {"name": {"type": "string"}}}},
|
|
}
|
|
result = process_for_additional_properties(json_dict)
|
|
self.assertFalse(result["additionalProperties"])
|
|
self.assertFalse(result["properties"]["person"]["additionalProperties"])
|
|
|
|
|
|
@patch("llguidance.LLMatcher")
|
|
@patch("llguidance.LLTokenizer")
|
|
class TestLLGuidanceProcessor(unittest.TestCase):
|
|
def setUp(self):
|
|
self.vocab_size = 100
|
|
self.batch_size = 2
|
|
|
|
def test_initialization(self, mock_tokenizer, mock_matcher):
|
|
# Test initialization
|
|
processor = LLGuidanceProcessor(
|
|
ll_matcher=mock_matcher,
|
|
ll_tokenizer=mock_tokenizer,
|
|
serialized_grammar="test_grammar",
|
|
vocab_size=self.vocab_size,
|
|
batch_size=self.batch_size,
|
|
)
|
|
|
|
self.assertEqual(processor.vocab_size, self.vocab_size)
|
|
self.assertEqual(processor.batch_size, self.batch_size)
|
|
self.assertFalse(processor.is_terminated)
|
|
|
|
def test_reset(self, mock_tokenizer, mock_matcher):
|
|
# Test reset functionality
|
|
processor = LLGuidanceProcessor(
|
|
ll_matcher=mock_matcher,
|
|
ll_tokenizer=mock_tokenizer,
|
|
serialized_grammar="test_grammar",
|
|
vocab_size=self.vocab_size,
|
|
batch_size=self.batch_size,
|
|
)
|
|
|
|
processor.is_terminated = True
|
|
processor.reset()
|
|
|
|
mock_matcher.reset.assert_called_once()
|
|
self.assertFalse(processor.is_terminated)
|
|
|
|
def test_accept_token(self, mock_tokenizer, mock_matcher):
|
|
# Test accept_token functionality
|
|
mock_matcher.is_stopped.return_value = False
|
|
mock_matcher.consume_tokens.return_value = True
|
|
mock_tokenizer.eos_token = 1
|
|
|
|
processor = LLGuidanceProcessor(
|
|
ll_matcher=mock_matcher,
|
|
ll_tokenizer=mock_tokenizer,
|
|
serialized_grammar="test_grammar",
|
|
vocab_size=self.vocab_size,
|
|
batch_size=self.batch_size,
|
|
)
|
|
|
|
# Normal token
|
|
result = processor.accept_token(0)
|
|
self.assertTrue(result)
|
|
mock_matcher.consume_tokens.assert_called_with([0])
|
|
|
|
# EOS token
|
|
result = processor.accept_token(1)
|
|
self.assertTrue(result)
|
|
self.assertTrue(processor.is_terminated)
|
|
|
|
|
|
@patch("llguidance.LLMatcher")
|
|
@patch("llguidance.hf.from_tokenizer")
|
|
class TestLLGuidanceBackend(unittest.TestCase):
|
|
def setUp(self):
|
|
# Create a mock FDConfig
|
|
self.fd_config = MagicMock()
|
|
self.fd_config.model_config.vocab_size = 100
|
|
self.fd_config.scheduler_config.max_num_seqs = 2
|
|
self.fd_config.structured_outputs_config.disable_any_whitespace = False
|
|
self.fd_config.structured_outputs_config.disable_additional_properties = False
|
|
self.fd_config.structured_outputs_config.reasoning_parser = None
|
|
|
|
def test_initialization(self, mock_from_tokenizer, mock_matcher):
|
|
# Test backend initialization
|
|
mock_tokenizer = MagicMock()
|
|
with patch.object(BackendBase, "_get_tokenizer_hf", return_value=mock_tokenizer):
|
|
backend = LLGuidanceBackend(fd_config=self.fd_config)
|
|
|
|
self.assertEqual(backend.vocab_size, 100)
|
|
self.assertEqual(backend.batch_size, 2)
|
|
self.assertTrue(backend.any_whitespace)
|
|
|
|
@patch("llguidance.LLMatcher")
|
|
def test_create_processor(self, mock_matcher_class, mock_from_tokenizer, mock_matcher):
|
|
# Test creating a processor
|
|
with patch.object(LLGuidanceBackend, "__init__", return_value=None):
|
|
backend = LLGuidanceBackend(fd_config=None) # Arguments are not important because __init__ is mocked
|
|
|
|
# Manually set all required attributes
|
|
backend.hf_tokenizer = MagicMock()
|
|
backend.ll_tokenizer = MagicMock()
|
|
backend.vocab_size = 100
|
|
backend.batch_size = 2
|
|
backend.any_whitespace = True
|
|
backend.disable_additional_properties = False
|
|
|
|
mock_matcher = MagicMock()
|
|
mock_matcher_class.return_value = mock_matcher
|
|
|
|
processor = backend._create_processor("test_grammar")
|
|
|
|
self.assertIsInstance(processor, LLGuidanceProcessor)
|
|
self.assertEqual(processor.vocab_size, 100)
|
|
self.assertEqual(processor.batch_size, 2)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|