mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-27 04:46:16 +08:00
194 lines
6.3 KiB
Python
194 lines
6.3 KiB
Python
import argparse
|
|
import json
|
|
import os
|
|
import re
|
|
import time
|
|
|
|
import paddle
|
|
from paddleformers.trainer import strtobool
|
|
from paddleformers.transformers.configuration_utils import PretrainedConfig
|
|
from paddleformers.transformers.model_utils import shard_checkpoint
|
|
from paddleformers.utils.env import SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME
|
|
from paddleformers.utils.log import logger
|
|
from safetensors.numpy import save_file as safe_save_file
|
|
|
|
from fastdeploy.input.ernie4_5_tokenizer import Ernie4_5Tokenizer
|
|
from fastdeploy.model_executor.layers.utils import get_tensor
|
|
from fastdeploy.model_executor.load_weight_utils import (
|
|
get_all_safetensors,
|
|
safetensors_weights_iterator,
|
|
)
|
|
from fastdeploy.model_executor.ops.gpu import w4afp8_gemm_scale_permute
|
|
|
|
|
|
def parse_arguments():
|
|
"""
|
|
parse_arguments
|
|
"""
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument(
|
|
"--model_name_or_path",
|
|
default=None,
|
|
required=True,
|
|
help="The directory of model.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--output_dir",
|
|
default="merged_output",
|
|
required=True,
|
|
help="The directory of merged model output.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--safe_serialization",
|
|
type=strtobool,
|
|
default="True",
|
|
help="Whether merge the model into safetensors format.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--moe_quant_type",
|
|
default="w4a8",
|
|
choices=["w4a8", "w4afp8"],
|
|
help="The moe quant type of the model.",
|
|
)
|
|
|
|
return parser.parse_args()
|
|
|
|
|
|
def reorder():
|
|
def fn(weight, moe_quant_type):
|
|
from paddle.nn.quant import weight_quantize
|
|
|
|
quant_weight, _ = weight_quantize(weight.cuda(), algo=moe_quant_type, arch=80)
|
|
return quant_weight.cpu()
|
|
|
|
return fn
|
|
|
|
|
|
def deal_in_scale():
|
|
def fn(in_scale):
|
|
processed_in_scale = 1 / in_scale
|
|
return processed_in_scale
|
|
|
|
return fn
|
|
|
|
|
|
def deal_weight_scale():
|
|
def fn(weight_scale, processed_in_scale, moe_quant_type):
|
|
if moe_quant_type == "w4a8":
|
|
processed_weight_scale = weight_scale / (127 * 112) / processed_in_scale
|
|
return processed_weight_scale
|
|
elif moe_quant_type == "w4afp8":
|
|
processed_weight_scale = weight_scale / (448 * 7 * 2 ** (-9)) / processed_in_scale
|
|
processed_weight_scale = w4afp8_gemm_scale_permute(processed_weight_scale.cuda())
|
|
return processed_weight_scale
|
|
|
|
return fn
|
|
|
|
|
|
# tmp support w4a8
|
|
def deal_quant(state_dict, save_state_dict, moe_quant_type):
|
|
param_mapping = [
|
|
# pattern,fn
|
|
(r"layers\.(\d+)\.mlp\.experts\.(\d+)\.([^.]+)\.activation_scale", deal_in_scale()),
|
|
(r"layers\.(\d+)\.mlp\.experts\.(\d+)\.([^.]+)\.weight_scale", deal_weight_scale()),
|
|
(r"layers\.(\d+)\.mlp\.experts\.(\d+)\.([^.]+)\.quant_weight", reorder()),
|
|
]
|
|
for pattern, fn in param_mapping:
|
|
for key in list(state_dict.keys()):
|
|
# print(f"deal {key}")
|
|
match = re.search(pattern, key)
|
|
if match:
|
|
# print(f"{key} is match")
|
|
weight_or_scale = state_dict.pop(key)
|
|
if "weight_scale" in key:
|
|
in_scale_key = key.replace("weight_scale", "activation_scale")
|
|
in_scale = save_state_dict[in_scale_key]
|
|
save_state_dict[key] = fn(weight_or_scale, in_scale, moe_quant_type)
|
|
elif "activation_scale" in key:
|
|
save_state_dict[key] = fn(weight_or_scale)
|
|
else:
|
|
save_state_dict[key] = fn(weight_or_scale, moe_quant_type)
|
|
|
|
|
|
def save_safetensors(state_dict, args):
|
|
"""
|
|
save_safetensors
|
|
"""
|
|
logger.info("Move to numpy.")
|
|
for k in list(state_dict.keys()):
|
|
if isinstance(state_dict[k], paddle.Tensor):
|
|
state_dict[k] = state_dict.pop(k).cpu().numpy()
|
|
|
|
logger.info("Save safetensors files.")
|
|
shards, index = shard_checkpoint(
|
|
state_dict,
|
|
max_shard_size="5GB",
|
|
weights_name=SAFE_WEIGHTS_NAME,
|
|
shard_format="naive",
|
|
)
|
|
for shard_file, shard in shards.items():
|
|
save_file = os.path.join(args.output_dir, shard_file)
|
|
logger.info(f"Saving {save_file}")
|
|
safe_save_file(shard, save_file, metadata={"format": "np"})
|
|
|
|
save_index_file = os.path.join(args.output_dir, SAFE_WEIGHTS_INDEX_NAME)
|
|
with open(save_index_file, "w", encoding="utf-8") as f:
|
|
content = json.dumps(index, indent=2) + "\n"
|
|
f.write(content)
|
|
|
|
|
|
def main():
|
|
"""
|
|
main
|
|
"""
|
|
args = parse_arguments()
|
|
pretrained_config, _ = PretrainedConfig.get_config_dict(args.model_name_or_path)
|
|
pretrained_config = PretrainedConfig.from_dict(pretrained_config)
|
|
vocab_file_names = [
|
|
"tokenizer.model",
|
|
"spm.model",
|
|
"ernie_token_100k.model",
|
|
]
|
|
for i in range(len(vocab_file_names)):
|
|
if os.path.exists(os.path.join(args.model_name_or_path, vocab_file_names[i])):
|
|
Ernie4_5Tokenizer.resource_files_names["vocab_file"] = vocab_file_names[i]
|
|
break
|
|
tokenizer = Ernie4_5Tokenizer.from_pretrained(args.model_name_or_path)
|
|
_, safetensor_files = get_all_safetensors(args.model_name_or_path)
|
|
weights_iterator = safetensors_weights_iterator(safetensor_files)
|
|
state_dict = {}
|
|
save_state_dict = {}
|
|
start = time.perf_counter()
|
|
for k, v in weights_iterator:
|
|
state_dict[k] = get_tensor(v).cpu()
|
|
end = time.perf_counter()
|
|
logger.info("Finish Quantize.")
|
|
logger.info(f"load and quantize took : {end - start:.6f} seconds")
|
|
deal_quant(state_dict, save_state_dict, args.moe_quant_type)
|
|
for key in list(state_dict.keys()):
|
|
save_state_dict[key] = state_dict.pop(key)
|
|
logger.info("Begin to save model")
|
|
os.makedirs(args.output_dir, exist_ok=True)
|
|
start = time.perf_counter()
|
|
if not args.safe_serialization:
|
|
paddle.save(
|
|
save_state_dict,
|
|
os.path.join(args.output_dir, "model_state.pdparams"),
|
|
)
|
|
else:
|
|
save_safetensors(save_state_dict, args)
|
|
pretrained_config.is_permuted = True
|
|
pretrained_config.save_pretrained(args.output_dir)
|
|
tokenizer.save_pretrained(args.output_dir)
|
|
end = time.perf_counter()
|
|
logger.info(f"save model took: {end - start:.6f} seconds")
|
|
logger.info("Finish.")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|