Files
FastDeploy/tests/pooling/test_embedding.py
lizexu123 c96a535a5d [Feature] support qwen3-embedding model load (#4202)
* support qwen3-embedding

* fix ci bug

* fix

* fix ci bug

* fix ci bug

* fix
2025-09-23 00:14:35 -07:00

222 lines
7.8 KiB
Python

# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import sys
import paddle
import pytest
from fastdeploy.config import (
CacheConfig,
FDConfig,
GraphOptimizationConfig,
LoadConfig,
ModelConfig,
ParallelConfig,
)
from fastdeploy.model_executor.models.adapters import as_embedding_model
from fastdeploy.model_executor.models.model_base import ModelRegistry
from fastdeploy.scheduler import SchedulerConfig
current_dir = os.path.dirname(os.path.abspath(__file__))
project_root = os.path.abspath(os.path.join(current_dir, ".."))
if project_root not in sys.path:
sys.path.insert(0, project_root)
from tests.model_loader.utils import get_torch_model_path
test_model_configs = {
"Qwen3-0.6B": {
"tensor_parallel_size": 2,
"max_model_len": 8192,
"baseline_suffix": "standard",
},
"Qwen3-Embedding-0.6B": {
"tensor_parallel_size": 2,
"max_model_len": 8192,
"baseline_suffix": "embedding",
},
}
class TestModelLoader:
@pytest.fixture(scope="session", autouse=True)
def setup_paddle(self):
if not paddle.is_compiled_with_cuda():
raise AssertionError("CUDA not available")
paddle.set_device("gpu")
yield
@pytest.fixture(scope="session", params=list(test_model_configs.keys()))
def model_info(self, request):
model_name = request.param
try:
torch_model_path = get_torch_model_path(model_name)
if not os.path.exists(torch_model_path):
raise AssertionError(f"Model path does not exist: {torch_model_path}")
return {"name": model_name, "path": torch_model_path, "config": test_model_configs[model_name]}
except Exception as e:
raise AssertionError(f"Could not get torch model path for {model_name}: {e}")
@pytest.fixture
def model_config(self, model_info):
if model_info is None:
raise AssertionError("model_info is None")
model_args = {
"model": model_info["path"],
"dtype": "bfloat16",
"max_model_len": model_info["config"]["max_model_len"],
"tensor_parallel_size": model_info["config"]["tensor_parallel_size"],
"runner": "auto",
"convert": "auto",
}
try:
config = ModelConfig(model_args)
return config
except Exception as e:
raise AssertionError(f"Could not create ModelConfig: {e}")
@pytest.fixture
def scheduler_config(self):
scheduler_args = {
"name": "local",
"max_num_seqs": 256,
"max_num_batched_tokens": 8192,
"splitwise_role": "mixed",
"max_size": -1,
"ttl": 900,
"max_model_len": 8192,
"enable_chunked_prefill": False,
"max_num_partial_prefills": 1,
"max_long_partial_prefills": 1,
"long_prefill_token_threshold": 0,
}
try:
config = SchedulerConfig(scheduler_args)
return config
except Exception as e:
raise AssertionError(f"Could not create SchedulerConfig: {e}")
@pytest.fixture
def fd_config(self, model_info, model_config, scheduler_config):
if model_config is None:
raise AssertionError("ModelConfig is None")
if scheduler_config is None:
raise AssertionError("SchedulerConfig is None")
try:
tensor_parallel_size = model_info["config"]["tensor_parallel_size"]
cache_args = {
"block_size": 64,
"gpu_memory_utilization": 0.9,
"cache_dtype": "bfloat16",
"model_cfg": model_config,
"tensor_parallel_size": tensor_parallel_size,
}
cache_config = CacheConfig(cache_args)
parallel_args = {
"tensor_parallel_size": tensor_parallel_size,
"data_parallel_size": 1,
}
parallel_config = ParallelConfig(parallel_args)
load_args = {}
load_config = LoadConfig(load_args)
graph_opt_args = {}
graph_opt_config = GraphOptimizationConfig(graph_opt_args)
fd_config = FDConfig(
model_config=model_config,
cache_config=cache_config,
parallel_config=parallel_config,
scheduler_config=scheduler_config,
load_config=load_config,
graph_opt_config=graph_opt_config,
test_mode=True,
)
return fd_config
except Exception as e:
raise AssertionError(f"Could not create FDConfig: {e}")
@pytest.fixture
def model_json_config(self, model_info):
if model_info is None:
raise AssertionError("model_info is None")
config_path = os.path.join(model_info["path"], "config.json")
if not os.path.exists(config_path):
raise AssertionError(f"Config file does not exist: {config_path}")
with open(config_path, "r", encoding="utf-8") as f:
return json.load(f)
def test_embedding_with_none_convert_type(self, model_info, fd_config, model_json_config):
if any(x is None for x in [model_info, fd_config, model_json_config]):
raise AssertionError("Required configs not available")
architectures = model_json_config.get("architectures", [])
if not architectures:
raise AssertionError("No architectures found in model config")
fd_config.model_config.convert_type = "none"
try:
model_cls = ModelRegistry.get_class(architectures[0])
if hasattr(model_cls, "__name__"):
assert (
"ForEmbedding" not in model_cls.__name__
), f"Standard model should not have 'ForEmbedding' in name, but got: {model_cls.__name__}"
standard_methods = set(dir(model_cls))
assert "_init_pooler" not in standard_methods, "Standard model should not have _init_pooler method"
except Exception as e:
raise AssertionError(f"Error in none convert type test: {e}")
def test_embedding_with_embed_convert_type(self, model_info, fd_config, model_json_config):
if any(x is None for x in [model_info, fd_config, model_json_config]):
raise AssertionError("Required configs not available")
architectures = model_json_config.get("architectures", [])
if not architectures:
raise AssertionError("No architectures found in model config")
fd_config.model_config.convert_type = "embed"
try:
model_cls = ModelRegistry.get_class(architectures[0])
model_cls = as_embedding_model(model_cls)
if hasattr(model_cls, "__name__"):
assert (
"ForEmbedding" in model_cls.__name__
), f"Embedding model should have 'ForEmbedding' in name, but got: {model_cls.__name__}"
embedding_methods = set(dir(model_cls))
assert "_init_pooler" in embedding_methods, "Embedding model should have _init_pooler method"
except Exception as e:
raise AssertionError(f"Error in embed convert type test: {e}")