Files
FastDeploy/tests/output/test_get_save_output_v1.py
2025-09-15 18:33:30 +08:00

145 lines
4.6 KiB
Python

# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import signal
import socket
import subprocess
import time
import traceback
import pytest
from fastdeploy import LLM, SamplingParams
FD_ENGINE_QUEUE_PORT = int(os.getenv("FD_ENGINE_QUEUE_PORT", 8313))
FD_CACHE_QUEUE_PORT = int(os.getenv("FD_CACHE_QUEUE_PORT", 8333))
MAX_WAIT_SECONDS = 60
os.environ["LD_LIBRARY_PATH"] = "/usr/local/nccl/"
# enable get_save_output_v1
os.environ["FD_USE_GET_SAVE_OUTPUT_V1"] = "1"
def is_port_open(host: str, port: int, timeout=1.0):
"""
Check if a TCP port is open on the given host.
Returns True if connection succeeds, False otherwise.
"""
try:
with socket.create_connection((host, port), timeout):
return True
except Exception:
return False
@pytest.fixture(scope="module")
def model_path():
"""
Get model path from environment variable MODEL_PATH,
default to "./ERNIE-4.5-0.3B-Paddle" if not set.
"""
base_path = os.getenv("MODEL_PATH")
if base_path:
return os.path.join(base_path, "ERNIE-4.5-0.3B-Paddle")
else:
return "./ERNIE-4.5-0.3B-Paddle"
@pytest.fixture(scope="module")
def llm(model_path):
"""
Fixture to initialize the LLM model with a given model path
"""
try:
output = subprocess.check_output(f"lsof -i:{FD_ENGINE_QUEUE_PORT} -t", shell=True).decode().strip()
for pid in output.splitlines():
os.kill(int(pid), signal.SIGKILL)
print(f"Killed process on port {FD_ENGINE_QUEUE_PORT}, pid={pid}")
except subprocess.CalledProcessError:
pass
try:
start = time.time()
llm = LLM(
model=model_path,
tensor_parallel_size=2,
num_gpu_blocks_override=1024,
engine_worker_queue_port=FD_ENGINE_QUEUE_PORT,
cache_queue_port=FD_CACHE_QUEUE_PORT,
max_model_len=8192,
seed=1,
)
# Wait for the port to be open
wait_start = time.time()
while not is_port_open("127.0.0.1", FD_ENGINE_QUEUE_PORT):
if time.time() - wait_start > MAX_WAIT_SECONDS:
pytest.fail(
f"Model engine did not start within {MAX_WAIT_SECONDS} seconds on port {FD_ENGINE_QUEUE_PORT}"
)
time.sleep(1)
print(f"Model loaded successfully from {model_path} in {time.time() - start:.2f}s.")
yield llm
except Exception:
print(f"Failed to load model from {model_path}.")
traceback.print_exc()
pytest.fail(f"Failed to initialize LLM model from {model_path}")
def test_generate_prompts(llm):
"""
Test basic prompt generation
"""
# Only one prompt enabled for testing currently
prompts = [
"请介绍一下中国的四大发明。",
"太阳和地球之间的距离是多少?",
"写一首关于春天的古风诗。",
]
sampling_params = SamplingParams(
temperature=0.8,
top_p=0.95,
)
try:
outputs = llm.generate(prompts, sampling_params)
# Verify basic properties of the outputs
assert len(outputs) == len(prompts), "Number of outputs should match number of prompts"
for i, output in enumerate(outputs):
assert output.prompt == prompts[i], f"Prompt mismatch for case {i + 1}"
assert isinstance(output.outputs.text, str), f"Output text should be string for case {i + 1}"
assert len(output.outputs.text) > 0, f"Generated text should not be empty for case {i + 1}"
assert isinstance(output.finished, bool), f"'finished' should be boolean for case {i + 1}"
assert output.metrics.model_execute_time > 0, f"Execution time should be positive for case {i + 1}"
print(f"=== Prompt generation Case {i + 1} Passed ===")
except Exception:
print("Failed during prompt generation.")
traceback.print_exc()
pytest.fail("Prompt generation test failed")
if __name__ == "__main__":
"""
Main entry point for the test script.
"""
pytest.main(["-sv", __file__])