mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-07 01:22:59 +08:00

Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Deploy GitHub Pages / deploy (push) Has been cancelled
68 lines
2.3 KiB
Python
68 lines
2.3 KiB
Python
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import numpy as np
|
|
import paddle
|
|
|
|
from fastdeploy.model_executor.ops.xpu import f_moe_topk_select
|
|
|
|
np.random.seed(2025)
|
|
|
|
token_num = 15
|
|
expert_num = 256
|
|
moe_topk = 8
|
|
apply_norm_weight = True
|
|
|
|
gating_logits = np.random.random([token_num, expert_num]).astype("float32")
|
|
bias = np.random.random([expert_num]).astype("float32")
|
|
|
|
|
|
def ref_moe_topk_select(gating_logits, bias, moe_topk, apply_norm_weight):
|
|
assert apply_norm_weight is True
|
|
|
|
def _softmax(x):
|
|
axis = 1
|
|
x_max = np.max(x, axis=axis, keepdims=True)
|
|
e_x = np.exp(x - x_max)
|
|
return e_x / np.sum(e_x, axis=axis, keepdims=True)
|
|
|
|
softmax_logits = _softmax(gating_logits)
|
|
softmax_logits_with_bias = np.copy(softmax_logits)
|
|
if bias is not None:
|
|
softmax_logits_with_bias += bias.reshape([1, -1])
|
|
sorted_indices = np.argsort(softmax_logits_with_bias, axis=1, kind="stable")[:, ::-1]
|
|
topk_ids = sorted_indices[:, :moe_topk]
|
|
topk_weights = np.take_along_axis(softmax_logits, topk_ids, axis=1)
|
|
topk_weights = topk_weights[:, :moe_topk]
|
|
topk_weights /= np.sum(topk_weights, axis=1, keepdims=True)
|
|
return topk_ids, topk_weights
|
|
|
|
|
|
ref_topk_ids, ref_topk_weights = ref_moe_topk_select(gating_logits, bias, moe_topk, apply_norm_weight)
|
|
|
|
gating_logits = paddle.to_tensor(gating_logits)
|
|
if bias is not None:
|
|
bias = paddle.to_tensor(bias)
|
|
|
|
topk_ids, topk_weights = f_moe_topk_select(gating_logits, bias, moe_topk, apply_norm_weight)
|
|
|
|
assert np.array_equal(
|
|
topk_ids.numpy(), ref_topk_ids
|
|
), f"\ntopk_ids:\n{topk_ids.numpy()}\nref_topk_ids:\n{ref_topk_ids}"
|
|
assert np.allclose(
|
|
topk_weights.numpy(), ref_topk_weights
|
|
), f"\ntopk_weights:\n{topk_weights.numpy()}\nref_topk_weights:\n{ref_topk_weights}"
|
|
|
|
print("Passed all tests.")
|