Files
FastDeploy/custom_ops/xpu_ops/test/test_moe_topk_select.py
zhupengyang 9d0074a91a
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Deploy GitHub Pages / deploy (push) Has been cancelled
[xpu] add ep custom ops (#3911)
2025-09-10 12:22:50 +08:00

68 lines
2.3 KiB
Python

# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import paddle
from fastdeploy.model_executor.ops.xpu import f_moe_topk_select
np.random.seed(2025)
token_num = 15
expert_num = 256
moe_topk = 8
apply_norm_weight = True
gating_logits = np.random.random([token_num, expert_num]).astype("float32")
bias = np.random.random([expert_num]).astype("float32")
def ref_moe_topk_select(gating_logits, bias, moe_topk, apply_norm_weight):
assert apply_norm_weight is True
def _softmax(x):
axis = 1
x_max = np.max(x, axis=axis, keepdims=True)
e_x = np.exp(x - x_max)
return e_x / np.sum(e_x, axis=axis, keepdims=True)
softmax_logits = _softmax(gating_logits)
softmax_logits_with_bias = np.copy(softmax_logits)
if bias is not None:
softmax_logits_with_bias += bias.reshape([1, -1])
sorted_indices = np.argsort(softmax_logits_with_bias, axis=1, kind="stable")[:, ::-1]
topk_ids = sorted_indices[:, :moe_topk]
topk_weights = np.take_along_axis(softmax_logits, topk_ids, axis=1)
topk_weights = topk_weights[:, :moe_topk]
topk_weights /= np.sum(topk_weights, axis=1, keepdims=True)
return topk_ids, topk_weights
ref_topk_ids, ref_topk_weights = ref_moe_topk_select(gating_logits, bias, moe_topk, apply_norm_weight)
gating_logits = paddle.to_tensor(gating_logits)
if bias is not None:
bias = paddle.to_tensor(bias)
topk_ids, topk_weights = f_moe_topk_select(gating_logits, bias, moe_topk, apply_norm_weight)
assert np.array_equal(
topk_ids.numpy(), ref_topk_ids
), f"\ntopk_ids:\n{topk_ids.numpy()}\nref_topk_ids:\n{ref_topk_ids}"
assert np.allclose(
topk_weights.numpy(), ref_topk_weights
), f"\ntopk_weights:\n{topk_weights.numpy()}\nref_topk_weights:\n{ref_topk_weights}"
print("Passed all tests.")