Files
FastDeploy/tests/worker/test_gpu_prompt_logprobs.py
kevin 954a145d57
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Deploy GitHub Pages / deploy (push) Has been cancelled
[Optimization] support mm prefill batch (#5313)
* support mm prefill batch

* update code

* update code

* update code

* update code

* fix encoder cache bug

* update code

* update code

* fix bug

* fix paddle ocr bug

* fix xpu bug

* update code
2025-12-11 22:21:14 +08:00

210 lines
7.2 KiB
Python

# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import time
import unittest
from unittest.mock import patch
import numpy as np
import paddle
from fastdeploy.config import (
CacheConfig,
FDConfig,
GraphOptimizationConfig,
LoadConfig,
ModelConfig,
ParallelConfig,
)
from fastdeploy.engine.request import Request
from fastdeploy.engine.sampling_params import SamplingParams
from fastdeploy.model_executor.layers.sample.sampler import Sampler
from fastdeploy.scheduler import SchedulerConfig
from fastdeploy.worker.gpu_model_runner import GPUModelRunner
# Mock classes and constants needed for the test
class MockConfig:
class ModelConfig:
enable_logprob = False
max_logprobs = -1
logprobs_mode = "raw_logprobs"
class SchedulerConfig:
max_num_seqs = 6
class CacheConfig:
enable_prefix_caching = False
speculative_config = None
model_config = ModelConfig()
scheduler_config = SchedulerConfig()
cache_config = CacheConfig()
class MockTask:
def __init__(self):
paddle.seed(0)
self.request_id = "test_request_1"
self.arrival_time = time.time()
self.inference_start_time = time.time()
self.schedule_start_time = time.time()
self.preprocess_end_time = time.time() - 0.1
self.preprocess_start_time = time.time() - 0.2
self.eos_token_ids = [2]
self.output_token_ids = []
self.messages = "Test prompt"
self.num_cached_tokens = 0
self.disaggregate_info = None
self.prefill_chunk_info = None
self.prefill_chunk_num = 0
self.pooling_params = None
self.llm_engine_recv_req_timestamp = time.time()
def get(self, key: str, default_value=None):
if hasattr(self, key):
return getattr(self, key)
elif hasattr(self, "sampling_params") and hasattr(self.sampling_params, key):
return getattr(self.sampling_params, key)
else:
return default_value
class FakeModel:
def __init__(self, vocab_size=128, hidden_size=128):
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.weight = paddle.rand([hidden_size, vocab_size], dtype="float32")
def compute_logits(self, x):
return paddle.matmul(x.astype("float32"), self.weight)
def build_config_json() -> str:
config_dict = {
"architectures": ["Qwen3MoeForCausalLM"],
"hidden_size": 7168,
"moe_intermediate_size": 1,
"moe_num_experts": 1,
"moe_k": 1,
"hidden_act": "silu",
"num_attention_heads": 64,
"dtype": "bfloat16",
}
tmp_dir = f"./tmpefef{paddle.distributed.get_rank()}"
os.makedirs(tmp_dir, exist_ok=True)
with open(f"./{tmp_dir}/config.json", "w") as f:
json.dump(config_dict, f)
model_name_or_path = os.path.join(os.getcwd(), tmp_dir)
print("model_name_or_path", model_name_or_path)
return model_name_or_path
def get_fd_config(batch_size: int):
fd_config = FDConfig(
model_config=ModelConfig(
{
"model": build_config_json(),
"max_model_len": 2048,
}
),
parallel_config=ParallelConfig(
{
"tensor_parallel_size": 1,
"expert_parallel_size": 1,
"expert_parallel_rank": 0,
"data_parallel_size": 1,
}
),
# quant_config=BlockWiseFP8Config(weight_block_size=[128, 128]),
scheduler_config=SchedulerConfig({"max_num_seqs": batch_size}),
cache_config=CacheConfig({}),
graph_opt_config=GraphOptimizationConfig({}),
load_config=LoadConfig({}),
ips="0.0.0.0",
)
return fd_config
class TestGPUPromptLogprobs(unittest.TestCase):
def setup_model_runner(self):
"""Helper method to setup GPUModelRunner with different configurations"""
cfg = MockConfig()
cfg.model_config.ori_vocab_size = 128
cfg.model_config.vocab_size = 128
cfg.model_config.hidden_size = 64
model_runner = GPUModelRunner.__new__(GPUModelRunner)
model_runner.fd_config = cfg
model_runner.scheduler_config = cfg.scheduler_config
model_runner.ori_vocab_size = cfg.model_config.ori_vocab_size
model_runner.share_inputs = {}
model_runner.share_inputs["cu_seqlens_q"] = paddle.to_tensor([0, 1, 2, 3], dtype="int32")
model_runner.sampler = Sampler(get_fd_config(batch_size=1))
model_runner.model = FakeModel(cfg.model_config.vocab_size, cfg.model_config.hidden_size)
model_runner.in_progress_prompt_logprobs = {}
return model_runner
def test_prompt_logprobs(self):
# Set FD_USE_GET_SAVE_OUTPUT_V1=1 to enable prompt_logprobs support
with patch.dict(os.environ, {"FD_USE_GET_SAVE_OUTPUT_V1": "1"}):
model_runner = self.setup_model_runner()
req: Request = Request(
prompt=None,
messages=None,
history=None,
tools=None,
system=None,
eos_token_ids=None,
request_id="asd1",
prompt_token_ids=[1, 2, 3, 4],
prompt_token_ids_len=4,
prefill_start_index=0,
prefill_end_index=4,
sampling_params=SamplingParams(prompt_logprobs=-1),
)
req.idx = 0
model_runner.prompt_logprobs_reqs = {req.request_id: req}
hidden_states = paddle.rand(
[len(req.prompt_token_ids) - 1, model_runner.fd_config.model_config.hidden_size], dtype="bfloat16"
)
ref_logits = model_runner.model.compute_logits(hidden_states)
ref_raw_logprobs = model_runner.sampler.compute_logprobs(ref_logits)
token_is = paddle.to_tensor(req.prompt_token_ids[1:], dtype="int64")
ref_token_ids, ref_logprobs, ref_ranks = model_runner.sampler.gather_logprobs(
ref_raw_logprobs, model_runner.fd_config.model_config.ori_vocab_size, token_is
)
prompt_logprobs = model_runner._get_prompt_logprobs_list(hidden_states)[0]
np.testing.assert_allclose(ref_logprobs.numpy(), prompt_logprobs.logprobs.numpy(), rtol=1e-04, atol=1e-04)
np.testing.assert_allclose(
ref_token_ids.numpy(), prompt_logprobs.logprob_token_ids.numpy(), rtol=1e-04, atol=1e-04
)
np.testing.assert_allclose(
ref_ranks.numpy(), prompt_logprobs.selected_token_ranks.numpy(), rtol=1e-04, atol=1e-04
)
if __name__ == "__main__":
unittest.main()