mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-12-24 13:28:13 +08:00
267 lines
11 KiB
Python
267 lines
11 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
import json
|
|
import os
|
|
import shutil
|
|
import unittest
|
|
|
|
import paddle
|
|
from paddle.distributed import fleet
|
|
|
|
from fastdeploy.config import (
|
|
CacheConfig,
|
|
FDConfig,
|
|
GraphOptimizationConfig,
|
|
LoadConfig,
|
|
ModelConfig,
|
|
ParallelConfig,
|
|
RoutingReplayConfig,
|
|
)
|
|
from fastdeploy.model_executor.layers.moe.moe import FusedMoE
|
|
from fastdeploy.model_executor.layers.quantization.w4a8 import W4A8Config
|
|
from fastdeploy.scheduler import SchedulerConfig
|
|
from fastdeploy.worker.worker_process import init_distributed_environment
|
|
from tests.utils import OpPerformanceTester
|
|
|
|
paddle.set_default_dtype("bfloat16")
|
|
|
|
|
|
class FuseMoEWrapper(paddle.nn.Layer):
|
|
def __init__(
|
|
self,
|
|
model_config: ModelConfig,
|
|
tp_size: int = 1,
|
|
tp_rank: int = 0,
|
|
ep_size: int = 1,
|
|
ep_rank: int = 0,
|
|
prefix: str = "layer0",
|
|
nnodes: int = 1,
|
|
):
|
|
super().__init__()
|
|
self.model_config = model_config
|
|
|
|
self.tp_size = tp_size
|
|
self.ep_size = ep_size
|
|
self.ep_rank = ep_rank
|
|
|
|
self.prefix = prefix
|
|
self.fd_config = FDConfig(
|
|
model_config=self.model_config,
|
|
parallel_config=ParallelConfig(
|
|
{
|
|
"tensor_parallel_size": self.tp_size,
|
|
"expert_parallel_size": self.ep_size,
|
|
"expert_parallel_rank": self.ep_rank,
|
|
"data_parallel_size": self.ep_size,
|
|
}
|
|
),
|
|
quant_config=W4A8Config(is_permuted=False, hadamard_block_size=128),
|
|
# quant_config=W4AFP8Config(weight_scale_dict=None, act_scale_dict=None, is_permuted=False, hadamard_block_size=128),
|
|
scheduler_config=SchedulerConfig({}),
|
|
cache_config=CacheConfig({}),
|
|
graph_opt_config=GraphOptimizationConfig({}),
|
|
load_config=LoadConfig({}),
|
|
ips=",".join(["0"] * nnodes),
|
|
routing_replay_config=RoutingReplayConfig({}),
|
|
)
|
|
self.fd_config.parallel_config.tp_group = None
|
|
self.fd_config.parallel_config.tensor_parallel_rank = tp_rank
|
|
self.fd_config.parallel_config.expert_parallel_size = self.ep_size
|
|
if self.ep_size > 1:
|
|
self.fd_config.parallel_config.ep_group = fleet.get_hybrid_communicate_group().get_model_parallel_group()
|
|
self.fd_config.scheduler_config.splitwise_role = "mixed"
|
|
self.fd_config.model_config.moe_phase.phase = "decode"
|
|
|
|
weight_key_map = {
|
|
"gate_weight_key": f"{self.prefix}.gate.weight",
|
|
"gate_correction_bias_key": f"{self.prefix}.moe_statics.e_score_correction_bias",
|
|
"up_gate_proj_expert_weight_key": f"{self.prefix}.experts.{{}}.up_gate_proj.weight",
|
|
"down_proj_expert_weight_key": f"{self.prefix}.experts.{{}}.down_proj.weight",
|
|
"up_gate_proj_expert_weight_scale_key": f"{self.prefix}.experts.{{}}.up_gate_proj.weight_scale",
|
|
"down_proj_expert_weight_scale_key": f"{self.prefix}.experts.{{}}.down_proj.weight_scale",
|
|
"up_gate_proj_expert_in_scale_key": f"{self.prefix}.experts.{{}}.up_gate_proj.activation_scale",
|
|
"down_proj_expert_in_scale_key": f"{self.prefix}.experts.{{}}.down_proj.activation_scale",
|
|
}
|
|
|
|
self.fused_moe = FusedMoE(
|
|
fd_config=self.fd_config,
|
|
moe_intermediate_size=self.fd_config.model_config.moe_intermediate_size,
|
|
num_experts=self.fd_config.model_config.moe_num_experts,
|
|
top_k=self.fd_config.model_config.moe_k,
|
|
# avoiding invoke clean_low_latency_buffer in mixed ep.
|
|
layer_idx=666,
|
|
weight_key_map=weight_key_map,
|
|
topk_method="noaux_tc",
|
|
topk_group=4,
|
|
n_group=8,
|
|
gate_correction_bias=paddle.zeros([self.fd_config.model_config.moe_num_experts], paddle.float32),
|
|
# gate_correction_bias = gate_correction_bias_real_data
|
|
)
|
|
self.pack_num = 2
|
|
moe_layer = self.fused_moe
|
|
|
|
up_gate_proj_weight_shape = [
|
|
moe_layer.num_local_experts,
|
|
moe_layer.hidden_size // self.pack_num,
|
|
moe_layer.moe_intermediate_size * 2,
|
|
]
|
|
down_proj_weight_shape = [
|
|
moe_layer.num_local_experts,
|
|
moe_layer.moe_intermediate_size // self.pack_num,
|
|
moe_layer.hidden_size,
|
|
]
|
|
up_gate_proj_weight_scale_shape = [
|
|
moe_layer.num_local_experts,
|
|
moe_layer.moe_intermediate_size * 2,
|
|
]
|
|
down_proj_weight_scale_shape = [
|
|
moe_layer.num_local_experts,
|
|
moe_layer.hidden_size,
|
|
]
|
|
|
|
up_gate_proj_weight = (paddle.randn(up_gate_proj_weight_shape, paddle.bfloat16) * 100).cast(paddle.int8)
|
|
down_proj_weight = (paddle.randn(down_proj_weight_shape, paddle.bfloat16) * 100).cast(paddle.int8)
|
|
|
|
up_gate_proj_weight_scale = paddle.randn(up_gate_proj_weight_scale_shape, paddle.bfloat16)
|
|
down_proj_weight_scale = paddle.randn(down_proj_weight_scale_shape, paddle.bfloat16)
|
|
|
|
up_gate_proj_in_scale = paddle.randn([self.fd_config.model_config.moe_num_experts, 1], paddle.float32)
|
|
down_proj_in_scale = paddle.randn([self.fd_config.model_config.moe_num_experts, 1], paddle.float32)
|
|
|
|
local_expert_ids = list(
|
|
range(moe_layer.expert_id_offset, moe_layer.expert_id_offset + moe_layer.num_local_experts)
|
|
)
|
|
state_dict = {}
|
|
up_gate_proj_expert_weight_key = moe_layer.weight_key_map.get("up_gate_proj_expert_weight_key")
|
|
up_gate_proj_expert_weight_scale_key = moe_layer.weight_key_map.get("up_gate_proj_expert_weight_scale_key")
|
|
up_gate_proj_expert_in_scale_key = moe_layer.weight_key_map.get("up_gate_proj_expert_in_scale_key")
|
|
down_proj_expert_weight_key = moe_layer.weight_key_map.get("down_proj_expert_weight_key")
|
|
down_proj_expert_weight_scale_key = moe_layer.weight_key_map.get("down_proj_expert_weight_scale_key")
|
|
down_proj_expert_in_scale_key = moe_layer.weight_key_map.get("down_proj_expert_in_scale_key")
|
|
|
|
for expert_idx in local_expert_ids:
|
|
up_gate_proj_expert_weight_key_name = up_gate_proj_expert_weight_key.format(expert_idx)
|
|
up_gate_proj_expert_weight_scale_key_name = up_gate_proj_expert_weight_scale_key.format(expert_idx)
|
|
down_proj_expert_weight_key_name = down_proj_expert_weight_key.format(expert_idx)
|
|
down_proj_expert_weight_scale_key_name = down_proj_expert_weight_scale_key.format(expert_idx)
|
|
|
|
state_dict[up_gate_proj_expert_weight_key_name] = up_gate_proj_weight[
|
|
expert_idx - moe_layer.expert_id_offset
|
|
]
|
|
state_dict[up_gate_proj_expert_weight_scale_key_name] = up_gate_proj_weight_scale[
|
|
expert_idx - moe_layer.expert_id_offset
|
|
]
|
|
state_dict[down_proj_expert_weight_key_name] = down_proj_weight[expert_idx - moe_layer.expert_id_offset]
|
|
state_dict[down_proj_expert_weight_scale_key_name] = down_proj_weight_scale[
|
|
expert_idx - moe_layer.expert_id_offset
|
|
]
|
|
|
|
for expert_idx in range(self.fd_config.model_config.moe_num_experts):
|
|
up_gate_proj_expert_in_scale_key_name = up_gate_proj_expert_in_scale_key.format(expert_idx)
|
|
down_proj_expert_in_scale_key_name = down_proj_expert_in_scale_key.format(expert_idx)
|
|
state_dict[up_gate_proj_expert_in_scale_key_name] = up_gate_proj_in_scale[expert_idx]
|
|
state_dict[down_proj_expert_in_scale_key_name] = down_proj_in_scale[expert_idx]
|
|
|
|
moe_layer.load_state_dict(state_dict)
|
|
|
|
|
|
class TestW4A8FusedMoE(unittest.TestCase):
|
|
def setUp(self) -> None:
|
|
self.architectures = ["Ernie4_5_MoeForCausalLM"]
|
|
self.hidden_size = 8192
|
|
self.moe_intermediate_size = 3584
|
|
self.moe_num_experts = 64
|
|
self.moe_k = 8
|
|
self.hidden_act = "silu"
|
|
self.num_attention_heads = 64
|
|
self.num_hidden_layers = 54
|
|
self.model_config = self.build_model_config()
|
|
|
|
def build_model_config(self) -> ModelConfig:
|
|
model_name_or_path = self.build_config_json()
|
|
return ModelConfig(
|
|
{
|
|
"model": model_name_or_path,
|
|
"max_model_len": 2048,
|
|
}
|
|
)
|
|
|
|
def build_config_json(self) -> str:
|
|
config_dict = {
|
|
"architectures": self.architectures,
|
|
"hidden_size": self.hidden_size,
|
|
"moe_intermediate_size": self.moe_intermediate_size,
|
|
"moe_num_experts": self.moe_num_experts,
|
|
"moe_k": self.moe_k,
|
|
"hidden_act": self.hidden_act,
|
|
"num_attention_heads": self.num_attention_heads,
|
|
"num_hidden_layers": self.num_hidden_layers,
|
|
"dtype": "bfloat16",
|
|
}
|
|
|
|
tmp_dir = f"./tmp_w4a8_moe_{paddle.distributed.get_rank()}"
|
|
os.makedirs(tmp_dir, exist_ok=True)
|
|
with open(f"./{tmp_dir}/config.json", "w") as f:
|
|
json.dump(config_dict, f)
|
|
self.model_name_or_path = os.path.join(os.getcwd(), tmp_dir)
|
|
return self.model_name_or_path
|
|
|
|
def test_fused_moe(self):
|
|
init_distributed_environment()
|
|
|
|
gating = paddle.nn.Linear(self.model_config.hidden_size, self.model_config.moe_num_experts)
|
|
gating.to(dtype=paddle.float32) # it's dtype is bfloat16 default, but the forward input is float32
|
|
gating.weight.set_value(paddle.rand(gating.weight.shape, dtype=paddle.float32))
|
|
|
|
# ep_size = paddle.distributed.get_world_size()
|
|
# ep_rank = paddle.distributed.get_rank()
|
|
ep_size = 1
|
|
ep_rank = 0
|
|
|
|
tp_size = 1
|
|
tp_rank = 0
|
|
|
|
nnodes = (ep_size + 7) // 8
|
|
|
|
# 这行代码必须保留,否则影响均匀性!
|
|
paddle.seed(ep_rank + 100)
|
|
|
|
fused_moe = FuseMoEWrapper(self.model_config, tp_size, tp_rank, ep_size, ep_rank, nnodes=nnodes).fused_moe
|
|
weight_size = fused_moe.top_k * fused_moe.hidden_size * fused_moe.moe_intermediate_size * 3 / 2
|
|
|
|
tester = OpPerformanceTester(
|
|
op_name="w4a8-moe",
|
|
op_fn=fused_moe,
|
|
num_layers=self.model_config.num_hidden_layers,
|
|
weight_size=weight_size,
|
|
gate=gating,
|
|
)
|
|
|
|
tester.benchmark(
|
|
input_size=self.model_config.hidden_size,
|
|
batch_sizes=[10, 20, 40, 60, 80, 100, 128],
|
|
)
|
|
|
|
def tearDown(self) -> None:
|
|
if self.model_name_or_path:
|
|
print("Remove tmp model config file")
|
|
shutil.rmtree(self.model_name_or_path)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|