mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-12-24 13:28:13 +08:00
* [Feature] support unified cache backend * fix * fix * fix * fix * Update metax_model_runner.py * fix * update * Update test_moba_attention_backend.py --------- Co-authored-by: ltd0924 <luotingdan@baidu.com>
186 lines
7.0 KiB
Python
186 lines
7.0 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License"
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
import unittest
|
|
from unittest.mock import patch
|
|
|
|
import numpy as np
|
|
import paddle
|
|
|
|
from fastdeploy.model_executor.layers.attention.moba_attention_backend import (
|
|
PlasAttentionBackend,
|
|
PlasAttentionMetadata,
|
|
)
|
|
|
|
|
|
class DummyFDConfig:
|
|
def __init__(self):
|
|
self.cache_config = type("CacheConfig", (), {"block_size": 4})()
|
|
self.model_config = type("ModelConfig", (), {"max_model_len": 16, "head_dim": 8, "num_hidden_layers": 2})()
|
|
self.scheduler_config = type("SchedulerConfig", (), {"max_num_seqs": 2})()
|
|
self.plas_attention_config = type(
|
|
"PlasConfig",
|
|
(),
|
|
{
|
|
"plas_block_size": 4,
|
|
"plas_encoder_top_k_left": 1,
|
|
"plas_encoder_top_k_right": 1,
|
|
"plas_use_encoder_seq_limit": 1,
|
|
"plas_decoder_top_k_left": 1,
|
|
"plas_decoder_top_k_right": 1,
|
|
"plas_use_decoder_seq_limit": 1,
|
|
"plas_max_seq_length": 32,
|
|
},
|
|
)()
|
|
self.graph_opt_config = type("GraphOptConfig", (), {"cudagraph_capture_sizes": None})()
|
|
self.parallel_config = type("ParallelConfig", (), {"block_size": 4})()
|
|
|
|
|
|
class DummyForwardMeta:
|
|
def __init__(self, enc_seq=[4, 4], dec_seq=[2, 2]):
|
|
self.seq_lens_encoder = paddle.to_tensor(enc_seq, dtype="int64")
|
|
self.seq_lens_decoder = paddle.to_tensor(dec_seq, dtype="int64")
|
|
self.seq_lens_this_time = sum(dec_seq)
|
|
self.cu_seqlens_q = paddle.to_tensor([0] + list(np.cumsum(dec_seq)), dtype="int64")
|
|
self.caches = [paddle.zeros([2, 4, 8])] * 4
|
|
self.block_tables = None
|
|
self.rotary_embs = None
|
|
|
|
|
|
class DummyLayer:
|
|
def __init__(self, layer_id=0, cache_quant_type_str=None, plas_use_mlp=True):
|
|
self.layer_id = layer_id
|
|
self.qkv_bias = None
|
|
self.cache_k_block_means = None
|
|
self.cache_quant_type_str = cache_quant_type_str
|
|
self.plas_use_mlp = plas_use_mlp
|
|
|
|
|
|
class TestPlasAttentionBackend(unittest.TestCase):
|
|
@patch(
|
|
"fastdeploy.model_executor.layers.attention.moba_attention_backend.get_cur_cu_seq_len_k",
|
|
return_value=(paddle.to_tensor([1, 2]), paddle.to_tensor([1, 2]), paddle.to_tensor([2])),
|
|
)
|
|
def test_init_attention_metadata(self, mock_get_cu_seq):
|
|
# Test initialization of attention metadata
|
|
fd_config = DummyFDConfig()
|
|
backend = PlasAttentionBackend(fd_config, kv_num_heads=2, num_heads=2, head_dim=8)
|
|
forward_meta = DummyForwardMeta()
|
|
backend.init_attention_metadata(forward_meta)
|
|
|
|
self.assertIsInstance(backend.attention_metadata, PlasAttentionMetadata)
|
|
self.assertTrue(backend.attention_metadata.q_input.shape[0] > 0)
|
|
|
|
@patch(
|
|
"fastdeploy.model_executor.layers.attention.moba_attention_backend.get_cur_cu_seq_len_k",
|
|
return_value=(
|
|
paddle.to_tensor([0]), # cu_seq_q_pack
|
|
paddle.to_tensor([0]), # cu_seqlens_k
|
|
paddle.to_tensor([0]), # q_pack_tokens
|
|
),
|
|
)
|
|
def test_init_attention_metadata_empty_seq(self, mock_get_cu_seq):
|
|
# Test metadata init with empty sequences
|
|
fd_config = DummyFDConfig()
|
|
backend = PlasAttentionBackend(fd_config, kv_num_heads=2, num_heads=2, head_dim=8)
|
|
forward_meta = DummyForwardMeta()
|
|
forward_meta.seq_lens_encoder = paddle.to_tensor([0])
|
|
forward_meta.seq_lens_decoder = paddle.to_tensor([0])
|
|
forward_meta.cu_seqlens_q = paddle.to_tensor([0, 0])
|
|
backend.init_attention_metadata(forward_meta)
|
|
|
|
def test_get_kv_cache_shape(self):
|
|
# Test KV cache shape calculation under different quant types
|
|
fd_config = DummyFDConfig()
|
|
backend = PlasAttentionBackend(fd_config, kv_num_heads=2, num_heads=2, head_dim=8)
|
|
|
|
# Default
|
|
key_shape, value_shape = backend.get_kv_cache_shape(max_num_blocks=2)
|
|
self.assertEqual(key_shape, [2, 2, 4, 8])
|
|
|
|
# int4_zp quant
|
|
key_shape_int4, value_shape_int4 = backend.get_kv_cache_shape(max_num_blocks=2, kv_cache_quant_type="int4_zp")
|
|
self.assertEqual(key_shape_int4, [2, 2, 4, 4])
|
|
|
|
# Other quant types
|
|
key_shape_other, value_shape_other = backend.get_kv_cache_shape(max_num_blocks=2, kv_cache_quant_type="int8")
|
|
self.assertEqual(key_shape_other, [2, 2, 4, 8])
|
|
|
|
@patch(
|
|
"fastdeploy.model_executor.layers.attention.moba_attention_backend.moba_attention",
|
|
return_value=(paddle.ones([4, 4]), None),
|
|
)
|
|
@patch(
|
|
"fastdeploy.model_executor.layers.attention.moba_attention_backend.get_cur_cu_seq_len_k",
|
|
return_value=(paddle.to_tensor([1, 2]), paddle.to_tensor([1, 2]), paddle.to_tensor([2])),
|
|
)
|
|
def test_forward_mixed(self, mock_get_cu_seq, mock_moba_attention):
|
|
# Test mixed forward path with various layer configurations
|
|
fd_config = DummyFDConfig()
|
|
backend = PlasAttentionBackend(fd_config, kv_num_heads=2, num_heads=2, head_dim=8)
|
|
forward_meta = DummyForwardMeta()
|
|
backend.init_attention_metadata(forward_meta)
|
|
|
|
# Complete layer attributes
|
|
layer = DummyLayer()
|
|
qkv = paddle.zeros([4, 4])
|
|
compressed_kv = paddle.zeros([4, 4])
|
|
k_pe = paddle.zeros([4, 4])
|
|
|
|
out = backend.forward_mixed(
|
|
q=None,
|
|
k=None,
|
|
v=None,
|
|
qkv=qkv,
|
|
compressed_kv=compressed_kv,
|
|
k_pe=k_pe,
|
|
layer=layer,
|
|
forward_meta=forward_meta,
|
|
)
|
|
self.assertTrue((out.numpy() == 1).all())
|
|
|
|
# Layer with missing attributes, no cache quant
|
|
layer_missing = DummyLayer(layer_id=1, cache_quant_type_str=None)
|
|
out2 = backend.forward_mixed(
|
|
q=None,
|
|
k=None,
|
|
v=None,
|
|
qkv=qkv,
|
|
compressed_kv=compressed_kv,
|
|
k_pe=k_pe,
|
|
layer=layer_missing,
|
|
forward_meta=forward_meta,
|
|
)
|
|
self.assertTrue((out2.numpy() == 1).all())
|
|
|
|
# Layer with int4_zp cache quant
|
|
layer_int4 = DummyLayer(layer_id=1, cache_quant_type_str="int4_zp")
|
|
out3 = backend.forward_mixed(
|
|
q=None,
|
|
k=None,
|
|
v=None,
|
|
qkv=qkv,
|
|
compressed_kv=compressed_kv,
|
|
k_pe=k_pe,
|
|
layer=layer_int4,
|
|
forward_meta=forward_meta,
|
|
)
|
|
self.assertTrue((out3.numpy() == 1).all())
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|