Files
FastDeploy/tests/utils.py
Longzhi Wang 5cd17fd662 [Models] Add forward_meta to moe models' forward function (#5138)
* [Models] Add forward_meta to moe models' forward function

* fix missing param

* fix

* fix

* fix forward_meta

* fix test and remove chunked MoE releated in config

* fix test

* fix

* fix
2025-12-04 13:26:58 +08:00

145 lines
4.8 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from unittest.mock import Mock
import numpy as np
import paddle
import paddle.device.cuda.graphs as graphs
from fastdeploy.config import (
CacheConfig,
FDConfig,
GraphOptimizationConfig,
ParallelConfig,
SchedulerConfig,
)
class MockForwardMeta:
def __init__(self):
# chunked MoE related.
self.moe_num_chunk = 1
self.max_moe_num_chunk = 1
class FakeModelConfig:
def __init__(self):
self.hidden_size = 768
self.intermediate_size = 768
self.num_hidden_layers = 12
self.num_attention_heads = 12
self.rms_norm_eps = 1e-6
self.tie_word_embeddings = True
self.ori_vocab_size = 32000
self.moe_layer_start_index = 8
self.pretrained_config = Mock()
self.pretrained_config.prefix_name = "test"
self.num_key_value_heads = 1
self.head_dim = 1
self.is_quantized = False
self.hidden_act = "relu"
self.vocab_size = 32000
self.hidden_dropout_prob = 0.1
self.initializer_range = 0.02
self.max_position_embeddings = 512
self.tie_word_embeddings = True
self.model_format = "auto"
self.enable_mm = False
self.max_model_len = 512
def get_default_test_fd_config():
graph_opt_config = GraphOptimizationConfig(args={})
scheduler_config = SchedulerConfig(args={})
scheduler_config.max_num_seqs = 1
parallel_config = ParallelConfig(args={})
parallel_config.data_parallel_rank = 1
cache_config = CacheConfig({})
model_config = FakeModelConfig()
fd_config = FDConfig(
graph_opt_config=graph_opt_config,
parallel_config=parallel_config,
cache_config=cache_config,
scheduler_config=scheduler_config,
model_config=model_config,
test_mode=True,
)
return fd_config
class OpPerformanceTester:
def __init__(self, op_name, op_fn, num_layers=20, weight_size=None, gate=None):
self.op_name = op_name
self.op_fn = op_fn
self.num_layers = num_layers
self.weight_size = weight_size
self.gate = gate
def _fake_model_run(self, x):
for j in range(self.num_layers):
if self.gate:
out = self.op_fn(x, self.gate, forward_meta=MockForwardMeta())
else:
out = self.op_fn(x)
return out
def benchmark(self, input_size, batch_sizes, dtype="bfloat16", num_warmup=1, num_tests=10):
print(f"======== {self.op_name} Performance ========")
print(
"{:<15} {:<40} {:<15} {:<15} {:<15}".format(
"Batch Size", "Last 5 Times (us)", "Last Time (us)", "TFlops", "TB/s"
)
)
for idx, bsz in enumerate(batch_sizes):
x = paddle.rand((bsz, input_size), dtype=dtype)
self._fake_model_run(x)
graph = graphs.CUDAGraph()
graph.capture_begin()
self._fake_model_run(x)
graph.capture_end()
start_events = [paddle.device.cuda.Event(enable_timing=True) for _ in range(num_tests)]
end_events = [paddle.device.cuda.Event(enable_timing=True) for _ in range(num_tests)]
for i in range(num_tests):
start_events[i].record()
graph.replay()
end_events[i].record()
paddle.device.synchronize()
times = np.array([round(s.elapsed_time(e), 2) for s, e in zip(start_events, end_events)])[num_warmup:]
times = times * 1e3 / self.num_layers # us / layer
times = np.array([round(time, 2) for time in times])
last_5_times = times[-5:]
last_time = times[-1]
tfloaps = None
tbps = None
if self.weight_size:
flops = 2 * bsz * self.weight_size
memory = self.weight_size
tfloaps = round(flops / 1e12 / (last_time * 1e-6), 1)
tbps = round(memory / 1e12 / (last_time * 1e-6), 1)
print("{:<15} {:<40} {:<15} {:<15} {:<15}".format(bsz, str(last_5_times), last_time, tfloaps, tbps))
else:
print("{:<15} {:<40} {:<15}".format(bsz, str(last_5_times), last_time))