Files
FastDeploy/tests/graph_optimization/test_cuda_graph_dynamic_subgraph.py
YuanRisheng 2e9e53ff7e [FDConfig]Remove max_num_batched_tokens/max_num_seqs in parallel config (#4116)
* remove max_num_batched_tokens in parallel config

* remove max_num_seqs

* update test case

* fix test

* fix

---------

Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com>
2025-09-17 10:43:35 +08:00

191 lines
6.7 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import unittest
import paddle
from fastdeploy.config import (
CacheConfig,
FDConfig,
GraphOptimizationConfig,
ParallelConfig,
SchedulerConfig,
)
from fastdeploy.model_executor.forward_meta import ForwardMeta
from fastdeploy.model_executor.graph_optimization.decorator import (
support_graph_optimization,
)
@support_graph_optimization
class TestCase1SubLayer1(paddle.nn.Layer):
"""Sub layer 1 of test case 1"""
def __init__(self, fd_config: FDConfig, **kwargs):
super().__init__()
def forward(self, ids_remove_padding, forward_meta: ForwardMeta):
"""Sub layer1 forward pass"""
output = paddle.add(forward_meta.input_ids, forward_meta.input_ids)
return output
def forward_correct(self, ids_remove_padding, forward_meta: ForwardMeta):
"""Sub layer1 Correct forward pass"""
output = paddle.add(forward_meta.input_ids, forward_meta.input_ids)
return output
class TestCase1SubLayer2(paddle.nn.Layer):
""" """
def __init__(self, fd_config: FDConfig, **kwargs):
super().__init__()
def forward(self, ids_remove_padding, forward_meta: ForwardMeta):
"""Sub layer2 forward pass"""
x = forward_meta.input_ids
y = forward_meta.input_ids
output = x + y
return output
def forward_correct(self, ids_remove_padding, forward_meta: ForwardMeta):
"""Sub layer2 Correct forward pass"""
x = forward_meta.input_ids
y = forward_meta.input_ids
output = x + y
return output
@support_graph_optimization
class TestCase1SubLayer3(paddle.nn.Layer):
""" """
def __init__(self, fd_config: FDConfig, **kwargs):
super().__init__()
def forward(self, ids_remove_padding, forward_meta: ForwardMeta):
"""Sub layer3 forward pass"""
output = paddle.matmul(forward_meta.input_ids, forward_meta.input_ids)
return output
def forward_correct(self, ids_remove_padding, forward_meta: ForwardMeta):
"""Sub layer3 Correct forward pass"""
output = paddle.matmul(forward_meta.input_ids, forward_meta.input_ids)
return output
class TestModel1(paddle.nn.Layer):
"""Test Model"""
def __init__(self, fd_config: FDConfig, **kwargs):
super().__init__()
self.fd_config = fd_config
self.sublayer1 = TestCase1SubLayer1(self.fd_config)
self.sublayer2 = TestCase1SubLayer2(self.fd_config) # Attention
self.sublayer3 = TestCase1SubLayer3(self.fd_config)
self.sublayer2_output_buffer = paddle.zeros([1])
def forward(self, ids_remove_padding, forward_meta: ForwardMeta):
"""Test model for ward pass"""
# sublayer1 use cuda graph
sub_meta1 = forward_meta
sublayer1_output = self.sublayer1(ids_remove_padding=ids_remove_padding, forward_meta=sub_meta1)
# sublayer2 not use cuda graph
sub_meta2 = ForwardMeta(input_ids=sublayer1_output, ids_remove_padding=sublayer1_output)
sublayer2_output = self.sublayer2(ids_remove_padding=sublayer1_output, forward_meta=sub_meta2)
self.sublayer2_output_buffer.copy_(sublayer2_output, False)
# sublayer3 use cuda graph
sub_meta3 = ForwardMeta(
input_ids=self.sublayer2_output_buffer,
ids_remove_padding=self.sublayer2_output_buffer,
step_use_cudagraph=True,
)
sublayer3_output = self.sublayer3(ids_remove_padding=self.sublayer2_output_buffer, forward_meta=sub_meta3)
return sublayer3_output
def forward_correct(self, ids_remove_padding, forward_meta: ForwardMeta):
"""Test model for ward pass"""
# sublayer1 not use cuda graph
sub_meta1 = forward_meta
sublayer1_output = self.sublayer1.forward_correct(
ids_remove_padding=ids_remove_padding, forward_meta=sub_meta1
)
# sublayer2 not use cuda graph
sub_meta2 = ForwardMeta(input_ids=sublayer1_output, ids_remove_padding=sublayer1_output)
sublayer2_output = self.sublayer2.forward_correct(ids_remove_padding=sublayer1_output, forward_meta=sub_meta2)
# sublayer3 not use cuda graph
sub_meta3 = ForwardMeta(input_ids=sublayer2_output, ids_remove_padding=sublayer2_output)
sublayer3_output = self.sublayer3.forward_correct(ids_remove_padding=sublayer2_output, forward_meta=sub_meta3)
return sublayer3_output
class TestCUDAGrpahSubgraph(unittest.TestCase):
"""
Test CUDAGraph Memory change
"""
def test_cuda_graph_subgraph(self):
"""Run test case"""
# Set FastDeploy config
graph_opt_config = GraphOptimizationConfig(args={})
graph_opt_config.use_cudagraph = True
scheduler_config = SchedulerConfig(args={})
scheduler_config.max_num_seqs = 8
cache_config = CacheConfig({})
parallel_config = ParallelConfig(args={})
# Initialize cuda graph capture list
graph_opt_config._set_cudagraph_sizes(max_num_seqs=scheduler_config.max_num_seqs)
graph_opt_config.init_with_cudagrpah_size(max_capture_size=scheduler_config.max_num_seqs)
fd_config = FDConfig(
graph_opt_config=graph_opt_config,
scheduler_config=scheduler_config,
parallel_config=parallel_config,
cache_config=cache_config,
test_mode=True,
)
# Run Test Case1
test_model1 = TestModel1(fd_config=fd_config)
input_tensor1 = paddle.ones([8])
forward_meta1 = ForwardMeta(input_ids=input_tensor1, ids_remove_padding=input_tensor1, step_use_cudagraph=True)
# Trigger Capture
_ = test_model1(ids_remove_padding=input_tensor1, forward_meta=forward_meta1)
# Replay
_ = test_model1(ids_remove_padding=input_tensor1, forward_meta=forward_meta1)
output1 = test_model1(ids_remove_padding=input_tensor1, forward_meta=forward_meta1)
# Correct output
output1_correct = test_model1.forward_correct(ids_remove_padding=input_tensor1, forward_meta=forward_meta1)
assert (output1 == output1_correct).all()
if __name__ == "__main__":
unittest.main()