Files
FastDeploy/tests/entrypoints/openai/test_completion_echo.py
zhuzixuan a47976e82d [Echo] Support more types of prompt echo (#4022)
* wenxin-tools-700 When the prompt type is list[int] or list[list[int]], it needs to support echoing after decoding.

* wenxin-tools-700 When the prompt type is list[int] or list[list[int]], it needs to support echoing after decoding.

* wenxin-tools-700 When the prompt type is list[int] or list[list[int]], it needs to support echoing after decoding.

* wenxin-tools-700 When the prompt type is list[int] or list[list[int]], it needs to support echoing after decoding.

* wenxin-tools-700 When the prompt type is list[int] or list[list[int]], it needs to support echoing after decoding.

* wenxin-tools-700 When the prompt type is list[int] or list[list[int]], it needs to support echoing after decoding.

* wenxin-tools-700 When the prompt type is list[int] or list[list[int]], it needs to support echoing after decoding.

* wenxin-tools-700 When the prompt type is list[int] or list[list[int]], it needs to support echoing after decoding.

* wenxin-tools-700 When the prompt type is list[int] or list[list[int]], it needs to support echoing after decoding.

---------

Co-authored-by: luukunn <83932082+luukunn@users.noreply.github.com>
2025-09-11 19:34:44 +08:00

205 lines
7.9 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import unittest
from unittest.mock import MagicMock
from fastdeploy.entrypoints.openai.serving_completion import (
CompletionRequest,
OpenAIServingCompletion,
)
class TestCompletionEcho(unittest.IsolatedAsyncioTestCase):
def setUp(self):
self.mock_engine = MagicMock()
self.completion_handler = None
self.mock_engine.data_processor.tokenizer.decode = lambda x: f"decoded_{x}"
"""Testing echo prompt in non-streaming of a single str prompt"""
def test_single_str_prompt_non_streaming(self):
self.completion_handler = OpenAIServingCompletion(
self.mock_engine, models=None, pid=123, ips=None, max_waiting_time=30
)
request = CompletionRequest(prompt="test prompt", max_tokens=10, echo=True, logprobs=1)
mock_output = {
"outputs": {
"text": " generated text",
"token_ids": [1, 2, 3],
"top_logprobs": {"token1": -0.1, "token2": -0.2},
"finished": True,
},
"output_token_ids": 3,
}
self.mock_engine.generate.return_value = [mock_output]
response = self.completion_handler.request_output_to_completion_response(
final_res_batch=[mock_output],
request=request,
request_id="test_id",
created_time=12345,
model_name="test_model",
prompt_batched_token_ids=[[1, 2]],
completion_batched_token_ids=[[3, 4, 5]],
text_after_process_list=["test prompt"],
)
self.assertEqual(response.choices[0].text, "test prompt generated text")
"""Testing echo prompt in non-streaming of a single int prompt"""
def test_single_int_prompt_non_streaming(self):
self.completion_handler = OpenAIServingCompletion(
self.mock_engine, models=None, pid=123, ips=None, max_waiting_time=30
)
request = CompletionRequest(prompt=[1, 2, 3], max_tokens=10, echo=True, logprobs=1)
mock_output = {
"outputs": {
"text": " generated text",
"token_ids": [1, 2, 3],
"top_logprobs": {"token1": -0.1, "token2": -0.2},
"finished": True,
},
"output_token_ids": 3,
}
self.mock_engine.generate.return_value = [mock_output]
response = self.completion_handler.request_output_to_completion_response(
final_res_batch=[mock_output],
request=request,
request_id="test_id",
created_time=12345,
model_name="test_model",
prompt_batched_token_ids=[[1, 2]],
completion_batched_token_ids=[[3, 4, 5]],
text_after_process_list=["test prompt"],
)
self.assertEqual(response.choices[0].text, "decoded_[1, 2, 3] generated text")
"""Testing echo prompts in non-streaming of multiple str prompts"""
def test_multi_str_prompt_non_streaming(self):
self.completion_handler = OpenAIServingCompletion(
self.mock_engine, models=None, pid=123, ips=None, max_waiting_time=30
)
request = CompletionRequest(prompt=["prompt1", "prompt2"], max_tokens=10, echo=True)
mock_outputs = [
{
"outputs": {"text": " response1", "token_ids": [1, 2], "top_logprobs": None, "finished": True},
"output_token_ids": 2,
},
{
"outputs": {"text": " response2", "token_ids": [3, 4], "top_logprobs": None, "finished": True},
"output_token_ids": 2,
},
]
self.mock_engine.generate.return_value = mock_outputs
response = self.completion_handler.request_output_to_completion_response(
final_res_batch=mock_outputs,
request=request,
request_id="test_id",
created_time=12345,
model_name="test_model",
prompt_batched_token_ids=[[1], [2]],
completion_batched_token_ids=[[1, 2], [3, 4]],
text_after_process_list=["prompt1", "prompt2"],
)
self.assertEqual(len(response.choices), 2)
self.assertEqual(response.choices[0].text, "prompt1 response1")
self.assertEqual(response.choices[1].text, "prompt2 response2")
"""Testing echo prompts in non-streaming of multiple int prompts"""
def test_multi_int_prompt_non_streaming(self):
self.completion_handler = OpenAIServingCompletion(
self.mock_engine, models=None, pid=123, ips=None, max_waiting_time=30
)
request = CompletionRequest(prompt=[[1, 2, 3], [4, 5, 6]], max_tokens=10, echo=True)
mock_outputs = [
{
"outputs": {"text": " response1", "token_ids": [1, 2], "top_logprobs": None, "finished": True},
"output_token_ids": 2,
},
{
"outputs": {"text": " response2", "token_ids": [3, 4], "top_logprobs": None, "finished": True},
"output_token_ids": 2,
},
]
self.mock_engine.generate.return_value = mock_outputs
response = self.completion_handler.request_output_to_completion_response(
final_res_batch=mock_outputs,
request=request,
request_id="test_id",
created_time=12345,
model_name="test_model",
prompt_batched_token_ids=[[1], [2]],
completion_batched_token_ids=[[1, 2], [3, 4]],
text_after_process_list=["prompt1", "prompt2"],
)
self.assertEqual(len(response.choices), 2)
self.assertEqual(response.choices[0].text, "decoded_[1, 2, 3] response1")
self.assertEqual(response.choices[1].text, "decoded_[4, 5, 6] response2")
"""Testing echo prompts in streaming of a single str prompt"""
async def test_single_str_prompt_streaming(self):
request = CompletionRequest(prompt="test prompt", max_tokens=10, stream=True, echo=True)
res = {"outputs": {"send_idx": 0, "text": "!"}}
idx = 0
instance = OpenAIServingCompletion(self.mock_engine, models=None, pid=123, ips=None, max_waiting_time=30)
res = await instance._process_echo_logic(request, idx, res["outputs"])
self.assertEqual(res["text"], "test prompt!")
"""Testing echo prompts in streaming of a single int prompt"""
async def test_single_int_prompt_streaming(self):
request = CompletionRequest(prompt=[1, 2, 3], max_tokens=10, stream=True, echo=True)
res = {"outputs": {"send_idx": 0, "text": "!"}}
idx = 0
instance = OpenAIServingCompletion(self.mock_engine, models=None, pid=123, ips=None, max_waiting_time=30)
res = await instance._process_echo_logic(request, idx, res["outputs"])
self.assertEqual(res["text"], "decoded_[1, 2, 3]!")
"""Testing echo prompts in streaming of multi str prompt"""
async def test_multi_str_prompt_streaming(self):
request = CompletionRequest(prompt=["test prompt1", "test prompt2"], max_tokens=10, stream=True, echo=True)
res = {"outputs": {"send_idx": 0, "text": "!"}}
idx = 0
instance = OpenAIServingCompletion(self.mock_engine, models=None, pid=123, ips=None, max_waiting_time=30)
res = await instance._process_echo_logic(request, idx, res["outputs"])
self.assertEqual(res["text"], "test prompt1!")
if __name__ == "__main__":
unittest.main()