Files
FastDeploy/custom_ops/gpu_ops/transfer_output.cc
2025-06-09 19:20:15 +08:00

107 lines
3.0 KiB
C++

// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <fstream>
#include <iostream>
#include <memory>
#include <stdexcept>
#include <string>
#include <dlfcn.h> // dladdr
#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <sys/time.h>
#include "paddle/extension.h"
#include "token_transfer.hpp"
#ifndef PD_BUILD_STATIC_OP
#define PD_BUILD_STATIC_OP(name) PD_BUILD_OP(static_op_##name)
#endif
// #define DEBUG_TRANSFER_OUTPUT
#ifdef DEBUG_TRANSFER_OUTPUT
void PrintVec(std::vector<int64_t> &vec) {
std::cout << "std::vector vec_size: " << vec.size();
for (int i{0}; i < vec.size(); i++) {
std::cout << " " << vec[i];
}
std::cout << std::endl;
}
void PrintVec(int64_t *arr) {
std::cout << "READ vec_size: " << arr[0];
for (int i{1}; i < arr[0] + 1; i++) {
std::cout << " " << arr[i];
}
std::cout << std::endl;
}
void PrintVec(int64_t bs, int64_t *arr) {
std::cout << "WRITE vec_size: " << bs;
for (int i{0}; i < bs; i++) {
std::cout << " " << arr[i];
}
std::cout << std::endl;
}
#endif
std::vector<paddle::Tensor> TransferOutput(const paddle::Tensor &x,
int64_t rank_id) {
using namespace paddle::inference::transfer;
auto x_cpu = x.copy_to(paddle::CPUPlace(), false);
if (rank_id != 0) {
return {x_cpu};
}
std::vector<int64_t> x_shape = x_cpu.shape();
int64_t token_num = x_cpu.numel();
// only support int64_t
assert(x_cpu.type() == paddle::DataType::INT64);
auto &token_transfer = TokenTransfer::Instance();
if (token_transfer.stream_cb_fn_) {
auto data_ptr = x_cpu.data<int64_t>();
std::vector<int64_t> tokens(data_ptr, data_ptr + token_num);
token_transfer.stream_cb_fn_(tokens, token_transfer.stream_cb_data_);
}
#ifdef DEBUG_TRANSFER_OUTPUT
else {
token_transfer.PushBatchToken(token_num, x_cpu.data<int64_t>());
}
#endif
return {x_cpu};
}
std::vector<std::vector<int64_t>> TransferOutputInferShape(
const std::vector<int64_t> &x_shape) {
return {x_shape};
}
std::vector<paddle::DataType> TransferOutputInferDtype(
const paddle::DataType &x_dtype) {
return {x_dtype};
}
PD_BUILD_STATIC_OP(transfer_output)
.Inputs({"x"})
.Attrs({"rank_id: int64_t"})
.Outputs({"out"})
.SetKernelFn(PD_KERNEL(TransferOutput))
.SetInferShapeFn(PD_INFER_SHAPE(TransferOutputInferShape))
.SetInferDtypeFn(PD_INFER_DTYPE(TransferOutputInferDtype));