Files
FastDeploy/custom_ops/gpu_ops/helper.h
AIbin a7392a0ff9 【Inference Optimize】DeepSeek-V3-model MLA Optimize (#3886)
* support MLA chunk_size auto search & cuda_graph
2025-09-11 10:46:09 +08:00

574 lines
17 KiB
C++

// Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#ifndef PADDLE_WITH_COREX
#include "glog/logging.h"
#endif
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#ifdef PADDLE_WITH_HIP
#include <hip/hip_bfloat16.h>
#include <hip/hip_fp16.h>
#include <hip/hip_runtime.h>
#include <hipcub/hipcub.hpp>
#include <hiprand.h>
#include <hiprand_kernel.h>
namespace cub = hipcub;
#else
#include <cub/cub.cuh>
#endif
#ifndef PADDLE_WITH_COREX
#include "nlohmann/json.hpp"
#endif
#include <fstream>
#include <iostream>
#include "env.h"
#include "paddle/extension.h"
#include "paddle/phi/core/allocator.h"
#ifdef PADDLE_WITH_CUSTOM_DEVICE
#include "paddle/phi/backends/custom/custom_context.h"
#else
#include "paddle/phi/core/cuda_stream.h"
#endif
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/backends/gpu/gpu_info.h"
#ifdef PADDLE_WITH_COREX
#define WARP_SIZE 64
#else
#define WARP_SIZE 32
#endif
#ifndef PD_BUILD_STATIC_OP
#define PD_BUILD_STATIC_OP(name) PD_BUILD_OP(static_op_##name)
#endif
#ifndef PADDLE_WITH_COREX
using json = nlohmann::json;
#endif
#define CUDA_CHECK(call) \
do { \
const cudaError_t error_code = call; \
if (error_code != cudaSuccess) { \
std::printf("at %s:%d - %s.\n", __FILE__, __LINE__, \
cudaGetErrorString(error_code)); \
exit(1); \
} \
} while (0)
#ifdef PADDLE_WITH_HIP
template <size_t kBlockSize = 256, size_t kNumWaves = 16>
inline hipError_t GetNumBlocks(int64_t n, int *num_blocks) {
int dev;
{
hipError_t err = hipGetDevice(&dev);
if (err != hipSuccess) {
return err;
}
}
int sm_count;
{
hipError_t err = hipDeviceGetAttribute(
&sm_count, hipDeviceAttributeMultiprocessorCount, dev);
if (err != hipSuccess) {
return err;
}
}
int tpm;
{
hipError_t err = hipDeviceGetAttribute(
&tpm, hipDeviceAttributeMaxThreadsPerMultiProcessor, dev);
if (err != hipSuccess) {
return err;
}
}
*num_blocks = std::max<int>(
1, std::min<int64_t>((n + kBlockSize - 1) / kBlockSize,
sm_count * tpm / kBlockSize * kNumWaves));
return hipSuccess;
}
#else
template <size_t kBlockSize = 256, size_t kNumWaves = 16>
inline cudaError_t GetNumBlocks(int64_t n, int *num_blocks) {
int dev;
{
cudaError_t err = cudaGetDevice(&dev);
if (err != cudaSuccess) {
return err;
}
}
int sm_count;
{
cudaError_t err =
cudaDeviceGetAttribute(&sm_count, cudaDevAttrMultiProcessorCount, dev);
if (err != cudaSuccess) {
return err;
}
}
int tpm;
{
cudaError_t err = cudaDeviceGetAttribute(
&tpm, cudaDevAttrMaxThreadsPerMultiProcessor, dev);
if (err != cudaSuccess) {
return err;
}
}
*num_blocks = std::max<int>(
1, std::min<int64_t>((n + kBlockSize - 1) / kBlockSize,
sm_count * tpm / kBlockSize * kNumWaves));
return cudaSuccess;
}
inline int GetGPUComputeCapability(int id) {
int major, minor;
auto major_error_code =
cudaDeviceGetAttribute(&major, cudaDevAttrComputeCapabilityMajor, id);
auto minor_error_code =
cudaDeviceGetAttribute(&minor, cudaDevAttrComputeCapabilityMinor, id);
return major * 10 + minor;
}
#endif
inline constexpr uint32_t next_pow_2(uint32_t const num) {
if (num <= 1)
return num;
return 1 << (CHAR_BIT * sizeof(num) - __builtin_clz(num - 1));
}
template <paddle::DataType D> class PDTraits;
template <> class PDTraits<paddle::DataType::FLOAT32> {
public:
typedef float DataType;
typedef float data_t;
};
template <> class PDTraits<paddle::DataType::FLOAT16> {
public:
typedef half DataType;
typedef paddle::float16 data_t;
};
template <> class PDTraits<paddle::DataType::BFLOAT16> {
public:
#ifdef PADDLE_WITH_HIP
typedef hip_bfloat16 DataType;
#else
typedef __nv_bfloat16 DataType;
#endif
typedef paddle::bfloat16 data_t;
};
template <> class PDTraits<paddle::DataType::INT8> {
public:
typedef int8_t DataType;
typedef int8_t data_t;
};
template <> class PDTraits<paddle::DataType::UINT8> {
public:
typedef uint8_t DataType;
typedef uint8_t data_t;
};
template <> class PDTraits<paddle::DataType::FLOAT8_E4M3FN> {
public:
typedef __nv_fp8_e4m3 DataType;
typedef paddle::float8_e4m3fn data_t;
};
template <typename T, int Size> struct alignas(sizeof(T) * Size) AlignedVector {
T val[Size];
HOSTDEVICE inline const T &operator[](int i) const { return val[i]; }
HOSTDEVICE inline T &operator[](int i) { return val[i]; }
};
template <typename T, int Size>
HOSTDEVICE inline void Load(const T *addr, AlignedVector<T, Size> *vec) {
const AlignedVector<T, Size> *addr_vec =
reinterpret_cast<const AlignedVector<T, Size> *>(addr);
*vec = *addr_vec;
}
template <typename T, int Size>
HOSTDEVICE inline void Store(const AlignedVector<T, Size> &vec, T *addr) {
AlignedVector<T, Size> *addr_vec =
reinterpret_cast<AlignedVector<T, Size> *>(addr);
*addr_vec = vec;
}
#ifdef PADDLE_WITH_HIP
template <int Size>
HOSTDEVICE inline void Store(const AlignedVector<hip_bfloat16, Size> &vec,
int8_t *addr) {
printf("Error: Store hip_bfloat16 to int8_t is not supported!");
}
#else
template <int Size>
HOSTDEVICE inline void Store(const AlignedVector<__nv_bfloat16, Size> &vec,
int8_t *addr) {
printf("Error: Store __nv_bfloat16 to int8_t is not supported!");
}
#endif
template <int Size>
HOSTDEVICE inline void Store(const AlignedVector<half, Size> &vec,
int8_t *addr) {
printf("Error: Store half to int8_t is not supported!");
}
constexpr int VEC_16B = 16;
template <typename T> __device__ T max_func(const T a, const T b) {
return a > b ? a : b;
}
template <typename T> struct MaxOp {
__device__ __forceinline__ T operator()(const T &a, const T &b) const {
return max_func(a, b);
}
};
inline int GetBlockSize(int vocab_size) {
if (vocab_size > 512) {
return 1024;
} else if (vocab_size > 256) {
return 512;
} else if (vocab_size > 128) {
return 256;
} else if (vocab_size > 64) {
return 128;
} else {
return 64;
}
}
#ifndef PADDLE_WITH_COREX
inline json readJsonFromFile(const std::string &filePath) {
std::ifstream file(filePath);
if (!file.is_open()) {
throw std::runtime_error("Unable to open file: " + filePath);
}
json j;
file >> j;
return j;
}
#endif
#define cudaCheckError() \
{ \
cudaError_t e = cudaGetLastError(); \
if (e != cudaSuccess) { \
std::cerr << "CUDA Error " << __FILE__ << ":" << __LINE__ << ": " \
<< cudaGetErrorString(e) << std::endl; \
exit(EXIT_FAILURE); \
} \
}
// place must be an existing place object and cannot use paddle::CPUPlace() or
// paddle::GPUPlace()
#ifdef PADDLE_DEV
inline paddle::Tensor GetEmptyTensor(const common::DDim &dims,
const paddle::DataType &dtype,
const paddle::Place &place) {
auto *allocator = paddle::GetAllocator(place);
phi::DenseTensor dense_tensor;
dense_tensor.Resize(dims);
dense_tensor.AllocateFrom(allocator, dtype,
dense_tensor.numel() * phi::SizeOf(dtype));
return paddle::Tensor(std::make_shared<phi::DenseTensor>(dense_tensor));
}
inline paddle::Tensor GetEmptyTensor(const common::DDim &dims,
const common::DDim &strides,
const paddle::DataType &dtype,
const paddle::Place &place) {
auto *allocator = paddle::GetAllocator(place);
phi::DenseTensor dense_tensor;
dense_tensor.Resize(dims);
dense_tensor.AllocateFrom(allocator, dtype,
dense_tensor.numel() * phi::SizeOf(dtype));
dense_tensor.set_strides(strides);
return paddle::Tensor(std::make_shared<phi::DenseTensor>(dense_tensor));
}
#endif
__global__ void free_and_dispatch_block(
bool *stop_flags, int *seq_lens_this_time, int *seq_lens_decoder,
int *block_tables, int *encoder_block_lens, bool *is_block_step,
int *step_block_list, // [bsz]
int *step_len, int *recover_block_list, int *recover_len,
int *need_block_list, int *need_block_len, int *used_list_len,
int *free_list, int *free_list_len, int64_t *first_token_ids, const int bsz,
const int block_size, const int block_num_per_seq,
const int max_decoder_block_num);
__global__ void speculate_free_and_dispatch_block(
bool *stop_flags, int *seq_lens_this_time, int *seq_lens_decoder,
int *block_tables, int *encoder_block_lens, bool *is_block_step,
int *step_block_list, // [bsz]
int *step_len, int *recover_block_list, int *recover_len,
int *need_block_list, int *need_block_len, int *used_list_len,
int *free_list, int *free_list_len, int64_t *first_token_ids,
int *accept_num, const int bsz, const int block_size,
const int block_num_per_seq, const int max_decoder_block_num,
const int max_draft_tokens);
__device__ bool speculate_free_and_dispatch_block(const int &qid,
int *need_block_list,
const int &need_block_len);
static std::string global_base64_chars = // NOLINT
"Tokp9lA/BjimRVKx32edMPFftOzsbNQ8C15Xn+YUEGc4WD0uLIq7hyJ6vZaHSwrg";
// Base64 编码函数
inline std::string base64_encode(const std::string &input) {
std::string ret;
int i = 0;
int j = 0;
unsigned char char_array_3[3];
unsigned char char_array_4[4];
for (const auto &c : input) {
char_array_3[i++] = c;
if (i == 3) {
char_array_4[0] = (char_array_3[0] & 0xfc) >> 2;
char_array_4[1] =
((char_array_3[0] & 0x03) << 4) + ((char_array_3[1] & 0xf0) >> 4);
char_array_4[2] =
((char_array_3[1] & 0x0f) << 2) + ((char_array_3[2] & 0xc0) >> 6);
char_array_4[3] = char_array_3[2] & 0x3f;
for (i = 0; i < 4; i++) {
ret += global_base64_chars[char_array_4[i]];
}
i = 0;
}
}
if (i) {
for (j = i; j < 3; j++) {
char_array_3[j] = '\0';
}
char_array_4[0] = (char_array_3[0] & 0xfc) >> 2;
char_array_4[1] =
((char_array_3[0] & 0x03) << 4) + ((char_array_3[1] & 0xf0) >> 4);
char_array_4[2] =
((char_array_3[1] & 0x0f) << 2) + ((char_array_3[2] & 0xc0) >> 6);
char_array_4[3] = char_array_3[2] & 0x3f;
for (j = 0; j < i + 1; j++) {
ret += global_base64_chars[char_array_4[j]];
}
while (i++ < 3) {
ret += '=';
}
}
return ret;
}
// Base64 解码函数
inline std::string base64_decode(const std::string &encoded_string) {
int in_len = encoded_string.size();
int i = 0;
int j = 0;
int in_ = 0;
unsigned char char_array_4[4], char_array_3[3];
std::string ret;
while (in_len-- && (encoded_string[in_] != '=') &&
(isalnum(encoded_string[in_]) || (encoded_string[in_] == '+') ||
(encoded_string[in_] == '/'))) {
char_array_4[i++] = encoded_string[in_];
in_++;
if (i == 4) {
for (i = 0; i < 4; i++) {
char_array_4[i] = global_base64_chars.find(char_array_4[i]);
}
char_array_3[0] =
(char_array_4[0] << 2) + ((char_array_4[1] & 0x30) >> 4);
char_array_3[1] =
((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
for (i = 0; i < 3; i++) {
ret += char_array_3[i];
}
i = 0;
}
}
if (i) {
for (j = i; j < 4; j++) {
char_array_4[j] = 0;
}
for (j = 0; j < 4; j++) {
char_array_4[j] = global_base64_chars.find(char_array_4[j]);
}
char_array_3[0] = (char_array_4[0] << 2) + ((char_array_4[1] & 0x30) >> 4);
char_array_3[1] =
((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
for (j = 0; j < i - 1; j++) {
ret += char_array_3[j];
}
}
return ret;
}
#ifndef PADDLE_WITH_COREX
template <typename T>
inline T get_relative_best(nlohmann::json *json_data,
const std::string &target_key,
const T &default_value) {
if (json_data->contains(target_key)) {
return json_data->at(target_key);
} else {
// std::cerr << "The key " << target_key << " is not found in the JSON
// data." << std::endl;
return default_value;
}
}
#endif
__device__ inline bool is_in_end(const int64_t id, const int64_t *end_ids,
int length) {
bool flag = false;
for (int i = 0; i < length; i++) {
if (id == end_ids[i]) {
return true;
}
}
return flag;
}
template <typename T> inline __device__ __host__ T div_up(T m, T n) {
return (m + n - 1) / n;
}
template <typename T>
__device__ __inline__ T ClipFunc(const T v, const T min, const T max) {
if (v > max)
return max;
if (v < min)
return min;
return v;
}
template <typename T>
static void PrintMatrix3(const T *mat_d, int num, std::string name) {
std::vector<T> tmp(num);
#ifdef PADDLE_WITH_HIP
hipMemcpy(tmp.data(), mat_d, sizeof(T) * num, hipMemcpyDeviceToHost);
#else
cudaMemcpy(tmp.data(), mat_d, sizeof(T) * num, cudaMemcpyDeviceToHost);
#endif
std::ofstream outfile;
outfile.open(name + ".txt", std::ios::out);
std::stringstream ss;
for (int i = 0; i < num; ++i) {
if (std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value) {
ss << static_cast<int>(tmp[i]) << std::endl;
} else {
ss << std::setprecision(8) << (float)(tmp[i]) << std::endl; // NOLINT
}
}
outfile << ss.str();
outfile.close();
}
#ifndef PADDLE_WITH_HIP
#ifndef PADDLE_WITH_CUSTOM_DEVICE_METAX_GPU
__forceinline__ __device__ uint32_t ld_flag_acquire(uint32_t *flag_addr,
int mode = 0) {
uint32_t flag;
if (mode == 0) {
asm volatile("ld.acquire.sys.global.b32 %0, [%1];"
: "=r"(flag)
: "l"(flag_addr));
} else if (mode == 1) {
asm volatile("ld.acquire.gpu.global.b32 %0, [%1];"
: "=r"(flag)
: "l"(flag_addr));
} else {
asm volatile("ld.acquire.cta.global.b32 %0, [%1];"
: "=r"(flag)
: "l"(flag_addr));
}
return flag;
}
__forceinline__ __device__ void st_flag_release(uint32_t *flag_addr,
uint32_t flag, int mode = 0) {
if (mode == 0) {
asm volatile("st.release.sys.global.b32 [%1], %0;" ::"r"(flag),
"l"(flag_addr));
} else if (mode == 1) {
asm volatile("st.release.gpu.global.b32 [%1], %0;" ::"r"(flag),
"l"(flag_addr));
} else {
asm volatile("st.release.cta.global.b32 [%1], %0;" ::"r"(flag),
"l"(flag_addr));
}
}
#endif
inline int get_cuda_max_shared_memory_per_block_opt_in(int const device) {
int max_shared_mem_per_block_opt_in = 0;
cudaDeviceGetAttribute(&max_shared_mem_per_block_opt_in,
cudaDevAttrMaxSharedMemoryPerBlockOptin, device);
return max_shared_mem_per_block_opt_in;
}
#endif
inline int GetSMVersion() {
static int sm_version = phi::backends::gpu::GetGPUComputeCapability(
phi::backends::gpu::GetCurrentDeviceId());
return sm_version;
}
inline bool GetMlaUseTensorcore() {
static const bool flags_mla_use_tensorcore = get_mla_use_tensorcore();
static const bool enable_mla_tensorcore = GetSMVersion() >= 90 ? true : false;
const bool mla_use_tensorcore =
flags_mla_use_tensorcore && enable_mla_tensorcore;
return mla_use_tensorcore;
}