Files
FastDeploy/benchmarks/benchmark_mtp.py
2025-07-19 23:19:27 +08:00

179 lines
5.0 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import argparse
import asyncio
import contextlib
import os
from typing import Union
from benchmark_dataset import EBChatDataset, EBDataset
from benchmark_serving import benchmark
def prepare_input_requests(num_prompts: int, dataset_name: str, dataset_path: str) -> Union[EBDataset, EBChatDataset]:
dataset_mapping = {
"EB": lambda: EBDataset(dataset_path=dataset_path).sample(num_requests=num_prompts),
"EBChat": lambda: EBChatDataset(dataset_path=dataset_path).sample(num_requests=num_prompts),
}
try:
input_requests = dataset_mapping[dataset_name]()
except KeyError as err:
raise ValueError(f"Unknown dataset: {dataset_name}") from err
return input_requests
class FakeTokenizer:
def encode(self, text: str, add_special_tokens: bool = False):
return []
def send_one_batch(base_url, max_concurrency, input_requests, disable_tqdm):
selected_percentile_metrics = ["s_itl"]
selected_percentiles = []
# Run benchmark
results = asyncio.run(
benchmark(
backend="openai-chat",
api_url=f"{base_url}/v1/chat/completions",
base_url=base_url,
model_id="default",
model_name="default",
input_requests=input_requests,
hyper_parameters={},
logprobs=None,
request_rate=float("inf"),
burstiness=1.0,
disable_tqdm=disable_tqdm,
profile=False,
selected_percentile_metrics=selected_percentile_metrics,
selected_percentiles=selected_percentiles,
ignore_eos=False,
goodput_config_dict=None,
max_concurrency=max_concurrency,
lora_modules=None,
extra_body=None,
)
)
record = {
"mean_s_itl_ms": results["mean_s_itl_ms"],
}
return record
def calculate_speedup(acceptance_rate, draft_token_step, t_ori, t_mtp):
tmp = 0.0
for i in range(draft_token_step):
tmp += pow(acceptance_rate, i + 1)
r_ac = tmp / (1 + tmp)
return t_ori / ((1 - r_ac) * t_mtp)
def main(args):
base_url = f"http://{args.host}:{args.port}"
input_requests = prepare_input_requests(args.num_prompts, args.dataset_name, args.dataset_path)
if len(args.max_concurrency) != len(args.s_itl_base_model):
raise ValueError("--max_concurrency should be same length as --s_itl_base_model")
for max_concurrency, s_itl in zip(args.max_concurrency, args.s_itl_base_model):
# Wramup
print("Starting warmup...")
with open(os.devnull, "w") as f:
with contextlib.redirect_stdout(f):
send_one_batch(
base_url,
max_concurrency,
input_requests[0:max_concurrency],
True,
)
# Benchmark
record = send_one_batch(base_url, max_concurrency, input_requests, False)
metric_header = "Speed up"
print("{s:{c}^{n}}".format(s=metric_header, n=50, c="-"))
for draft_token_step in args.draft_token_steps:
speedup = calculate_speedup(
args.acceptance_rate,
draft_token_step,
s_itl,
record["mean_s_itl_ms"],
)
print("{:<40} {:<10.2f}".format(f"Speed up on {draft_token_step} steps draft", speedup))
print("=" * 50)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--host",
type=str,
default="127.0.0.1",
)
parser.add_argument(
"--port",
type=str,
default="8000",
)
parser.add_argument(
"--max-concurrency",
type=int,
nargs="+",
default=(1, 2, 4, 8, 16, 32),
)
parser.add_argument(
"--num-prompts",
type=int,
default=128,
)
parser.add_argument(
"--acceptance-rate",
type=float,
default=0.8,
)
parser.add_argument(
"--draft-token-steps",
type=int,
nargs="+",
default=(1, 2),
)
parser.add_argument(
"--s_itl-base-model",
type=float,
nargs="+",
)
parser.add_argument(
"--dataset-name",
type=str,
default="EBChat",
)
parser.add_argument(
"--dataset-path",
type=str,
)
args = parser.parse_args()
main(args)