# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from fastdeploy import ModelFormat import fastdeploy as fd import cv2 import os import pickle import numpy as np import runtime_config as rc def test_detection_yolov5seg(): model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/yolov5s-seg.onnx" input_url1 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg" input_url2 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000570688.jpg" result_url1 = "https://bj.bcebos.com/paddlehub/fastdeploy/yolov5seg_result1.pkl" result_url2 = "https://bj.bcebos.com/paddlehub/fastdeploy/yolov5seg_result2.pkl" fd.download(model_url, "resources") fd.download(input_url1, "resources") fd.download(input_url2, "resources") fd.download(result_url1, "resources") fd.download(result_url2, "resources") model_file = "resources/yolov5s-seg.onnx" rc.test_option.use_ort_backend() model = fd.vision.detection.YOLOv5Seg( model_file, runtime_option=rc.test_option) with open("resources/yolov5seg_result1.pkl", "rb") as f: expect1 = pickle.load(f) with open("resources/yolov5seg_result2.pkl", "rb") as f: expect2 = pickle.load(f) # compare diff im1 = cv2.imread("./resources/000000014439.jpg") im2 = cv2.imread("./resources/000000570688.jpg") for i in range(3): # test single predict result1 = model.predict(im1) result2 = model.predict(im2) diff_boxes_1 = np.fabs( np.array(result1.boxes) - np.array(expect1["boxes"])) diff_boxes_2 = np.fabs( np.array(result2.boxes) - np.array(expect2["boxes"])) diff_label_1 = np.fabs( np.array(result1.label_ids) - np.array(expect1["label_ids"])) diff_label_2 = np.fabs( np.array(result2.label_ids) - np.array(expect2["label_ids"])) diff_scores_1 = np.fabs( np.array(result1.scores) - np.array(expect1["scores"])) diff_scores_2 = np.fabs( np.array(result2.scores) - np.array(expect2["scores"])) # for masks for j in range(np.array(result1.boxes).shape[0]): result_mask_1 = np.array(result1.masks[j].data).reshape( result1.masks[j].shape) diff_mask_1 = np.fabs(result_mask_1 - np.array(expect1["mask_" + str(j)])) nonzero_nums = np.count_nonzero(diff_mask_1) nonzero_count = nonzero_nums / (diff_mask_1.shape[0] * diff_mask_1.shape[1]) assert nonzero_count < 1e-02, "The different pixel ratio of mask1 is greater than 1%." for k in range(np.array(result2.boxes).shape[0]): result_mask_2 = np.array(result2.masks[k].data).reshape( result2.masks[k].shape) diff_mask_2 = np.fabs(result_mask_2 - np.array(expect2["mask_" + str(k)])) nonzero_nums = np.count_nonzero(diff_mask_2) nonzero_count = nonzero_nums / (diff_mask_2.shape[0] * diff_mask_2.shape[1]) assert nonzero_count < 1e-02, "The different pixel ratio of mask2 is greater than 1%." assert diff_boxes_1.max( ) < 1e-01, "There's difference in detection boxes 1." assert diff_label_1.max( ) < 1e-02, "There's difference in detection label 1." assert diff_scores_1.max( ) < 1e-04, "There's difference in detection score 1." assert diff_boxes_2.max( ) < 1e-01, "There's difference in detection boxes 2." assert diff_label_2.max( ) < 1e-02, "There's difference in detection label 2." assert diff_scores_2.max( ) < 1e-04, "There's difference in detection score 2." # test batch predict results = model.batch_predict([im1, im2]) result1 = results[0] result2 = results[1] diff_boxes_1 = np.fabs( np.array(result1.boxes) - np.array(expect1["boxes"])) diff_boxes_2 = np.fabs( np.array(result2.boxes) - np.array(expect2["boxes"])) diff_label_1 = np.fabs( np.array(result1.label_ids) - np.array(expect1["label_ids"])) diff_label_2 = np.fabs( np.array(result2.label_ids) - np.array(expect2["label_ids"])) diff_scores_1 = np.fabs( np.array(result1.scores) - np.array(expect1["scores"])) diff_scores_2 = np.fabs( np.array(result2.scores) - np.array(expect2["scores"])) # for masks for j in range(np.array(result1.boxes).shape[0]): result_mask_1 = np.array(result1.masks[j].data).reshape( result1.masks[j].shape) diff_mask_1 = np.fabs(result_mask_1 - np.array(expect1["mask_" + str(j)])) nonzero_nums = np.count_nonzero(diff_mask_1) nonzero_count = nonzero_nums / (diff_mask_1.shape[0] * diff_mask_1.shape[1]) assert nonzero_count < 1e-02, "The different pixel ratio of mask1 is greater than 1%." for k in range(np.array(result2.boxes).shape[0]): result_mask_2 = np.array(result2.masks[k].data).reshape( result2.masks[k].shape) diff_mask_2 = np.fabs(result_mask_2 - np.array(expect2["mask_" + str(k)])) nonzero_nums = np.count_nonzero(diff_mask_2) nonzero_count = nonzero_nums / (diff_mask_2.shape[0] * diff_mask_2.shape[1]) assert nonzero_count < 1e-02, "The different pixel ratio of mask2 is greater than 1%." assert diff_boxes_1.max( ) < 1e-01, "There's difference in detection boxes 1." assert diff_label_1.max( ) < 1e-02, "There's difference in detection label 1." assert diff_scores_1.max( ) < 1e-03, "There's difference in detection score 1." assert diff_boxes_2.max( ) < 1e-01, "There's difference in detection boxes 2." assert diff_label_2.max( ) < 1e-02, "There's difference in detection label 2." assert diff_scores_2.max( ) < 1e-04, "There's difference in detection score 2." def test_detection_yolov5seg_runtime(): model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/yolov5s-seg.onnx" input_url1 = "https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg" result_url1 = "https://bj.bcebos.com/paddlehub/fastdeploy/yolov5seg_result1.pkl" fd.download(model_url, "resources") fd.download(input_url1, "resources") fd.download(result_url1, "resources") model_file = "resources/yolov5s-seg.onnx" preprocessor = fd.vision.detection.YOLOv5SegPreprocessor() postprocessor = fd.vision.detection.YOLOv5SegPostprocessor() rc.test_option.set_model_path(model_file, model_format=ModelFormat.ONNX) rc.test_option.use_ort_backend() runtime = fd.Runtime(rc.test_option) with open("resources/yolov5seg_result1.pkl", "rb") as f: expect1 = pickle.load(f) # compare diff im1 = cv2.imread("./resources/000000014439.jpg") for i in range(3): # test runtime input_tensors, ims_info = preprocessor.run([im1.copy()]) output_tensors = runtime.infer({"images": input_tensors[0]}) results = postprocessor.run(output_tensors, ims_info) result1 = results[0] diff_boxes_1 = np.fabs( np.array(result1.boxes) - np.array(expect1["boxes"])) diff_label_1 = np.fabs( np.array(result1.label_ids) - np.array(expect1["label_ids"])) diff_scores_1 = np.fabs( np.array(result1.scores) - np.array(expect1["scores"])) # for masks for j in range(np.array(result1.boxes).shape[0]): result_mask_1 = np.array(result1.masks[j].data).reshape( result1.masks[j].shape) diff_mask_1 = np.fabs(result_mask_1 - np.array(expect1["mask_" + str(j)])) nonzero_nums = np.count_nonzero(diff_mask_1) nonzero_count = nonzero_nums / (diff_mask_1.shape[0] * diff_mask_1.shape[1]) assert nonzero_count < 1e-02, "The different pixel ratio of mask1 is greater than 1%." assert diff_boxes_1.max( ) < 1e-01, "There's difference in detection boxes 1." assert diff_label_1.max( ) < 1e-02, "There's difference in detection label 1." assert diff_scores_1.max( ) < 1e-04, "There's difference in detection score 1." if __name__ == "__main__": test_detection_yolov5seg() test_detection_yolov5seg_runtime()