# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from fastdeploy import ModelFormat import fastdeploy as fd import cv2 import os import pickle import numpy as np import runtime_config as rc def test_facedet_centerface(): model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/CenterFace.onnx" input_url1 = "https://raw.githubusercontent.com/DefTruth/lite.ai.toolkit/main/examples/lite/resources/test_lite_face_detector_3.jpg" result_url1 = "https://bj.bcebos.com/paddlehub/fastdeploy/centerface_result1.pkl" fd.download(model_url, "resources") fd.download(input_url1, "resources") fd.download(result_url1, "resources") model_file = "resources/CenterFace.onnx" model = fd.vision.facedet.CenterFace( model_file, runtime_option=rc.test_option) with open("resources/centerface_result1.pkl", "rb") as f: expect1 = pickle.load(f) # compare diff im1 = cv2.imread("./resources/test_lite_face_detector_3.jpg") print(expect1) for i in range(3): # test single predict result1 = model.predict(im1) diff_boxes_1 = np.fabs( np.array(result1.boxes) - np.array(expect1["boxes"])) diff_scores_1 = np.fabs( np.array(result1.scores) - np.array(expect1["scores"])) assert diff_boxes_1.max( ) < 1e-04, "There's difference in detection boxes 1." assert diff_scores_1.max( ) < 1e-05, "There's difference in detection score 1." def test_facedet_centerface_runtime(): model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/CenterFace.onnx" input_url1 = "https://raw.githubusercontent.com/DefTruth/lite.ai.toolkit/main/examples/lite/resources/test_lite_face_detector_3.jpg" result_url1 = "https://bj.bcebos.com/paddlehub/fastdeploy/centerface_result1.pkl" fd.download(model_url, "resources") fd.download(input_url1, "resources") fd.download(result_url1, "resources") model_file = "resources/CenterFace.onnx" preprocessor = fd.vision.facedet.CenterFacePreprocessor() postprocessor = fd.vision.facedet.CenterFacePostprocessor() rc.test_option.set_model_path(model_file, model_format=ModelFormat.ONNX) rc.test_option.use_openvino_backend() runtime = fd.Runtime(rc.test_option) with open("resources/centerface_result1.pkl", "rb") as f: expect1 = pickle.load(f) # compare diff im1 = cv2.imread("./resources/test_lite_face_detector_3.jpg") for i in range(3): # test runtime input_tensors, ims_info = preprocessor.run([im1.copy()]) output_tensors = runtime.infer({"input.1": input_tensors[0]}) results = postprocessor.run(output_tensors, ims_info) result1 = results[0] diff_boxes_1 = np.fabs( np.array(result1.boxes) - np.array(expect1["boxes"])) diff_scores_1 = np.fabs( np.array(result1.scores) - np.array(expect1["scores"])) assert diff_boxes_1.max( ) < 1e-04, "There's difference in detection boxes 1." assert diff_scores_1.max( ) < 1e-05, "There's difference in detection score 1." if __name__ == "__main__": test_facedet_centerface() test_facedet_centerface_runtime()