// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "fastdeploy/vision/ocr/ppocr/det_preprocessor.h" #include "fastdeploy/vision/ocr/ppocr/utils/ocr_utils.h" namespace fastdeploy { namespace vision { namespace ocr { std::array DBDetectorPreprocessor::OcrDetectorGetInfo( FDMat* img, int max_size_len) { int w = img->Width(); int h = img->Height(); if (static_shape_infer_) { return {w, h, det_image_shape_[2], det_image_shape_[1]}; } float ratio = 1.f; int max_wh = w >= h ? w : h; if (max_wh > max_size_len) { if (h > w) { ratio = float(max_size_len) / float(h); } else { ratio = float(max_size_len) / float(w); } } int resize_h = int(float(h) * ratio); int resize_w = int(float(w) * ratio); resize_h = std::max(int(std::round(float(resize_h) / 32) * 32), 32); resize_w = std::max(int(std::round(float(resize_w) / 32) * 32), 32); return {w, h, resize_w, resize_h}; /* *ratio_h = float(resize_h) / float(h); *ratio_w = float(resize_w) / float(w); */ } DBDetectorPreprocessor::DBDetectorPreprocessor() { resize_op_ = std::make_shared(-1, -1); std::vector value = {0, 0, 0}; pad_op_ = std::make_shared(0, 0, 0, 0, value); std::vector mean = {0.485f, 0.456f, 0.406f}; std::vector std = {0.229f, 0.224f, 0.225f}; bool is_scale = true; normalize_permute_op_ = std::make_shared(mean, std, is_scale); } bool DBDetectorPreprocessor::ResizeImage(FDMat* img, int resize_w, int resize_h, int max_resize_w, int max_resize_h) { resize_op_->SetWidthAndHeight(resize_w, resize_h); (*resize_op_)(img); pad_op_->SetPaddingSize(0, max_resize_h - resize_h, 0, max_resize_w - resize_w); (*pad_op_)(img); return true; } bool DBDetectorPreprocessor::Apply(FDMatBatch* image_batch, std::vector* outputs) { int max_resize_w = 0; int max_resize_h = 0; batch_det_img_info_.clear(); batch_det_img_info_.resize(image_batch->mats->size()); for (size_t i = 0; i < image_batch->mats->size(); ++i) { FDMat* mat = &(image_batch->mats->at(i)); batch_det_img_info_[i] = OcrDetectorGetInfo(mat, max_side_len_); max_resize_w = std::max(max_resize_w, batch_det_img_info_[i][2]); max_resize_h = std::max(max_resize_h, batch_det_img_info_[i][3]); } for (size_t i = 0; i < image_batch->mats->size(); ++i) { FDMat* mat = &(image_batch->mats->at(i)); ResizeImage(mat, batch_det_img_info_[i][2], batch_det_img_info_[i][3], max_resize_w, max_resize_h); } if (!disable_normalize_ && !disable_permute_) { (*normalize_permute_op_)(image_batch); } outputs->resize(1); FDTensor* tensor = image_batch->Tensor(); (*outputs)[0].SetExternalData(tensor->Shape(), tensor->Dtype(), tensor->Data(), tensor->device, tensor->device_id); return true; } } // namespace ocr } // namespace vision } // namespace fastdeploy