// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "fastdeploy/fastdeploy_model.h" #include "fastdeploy/vision/common/processors/transform.h" #include "fastdeploy/vision/common/result.h" namespace fastdeploy { namespace vision { namespace facedet { /*! @brief YOLOv5Face model object used when to load a YOLOv5Face model exported by YOLOv5Face. */ class FASTDEPLOY_DECL YOLOv5Face : public FastDeployModel { public: /** \brief Set path of model file and the configuration of runtime. * * \param[in] model_file Path of model file, e.g ./yolov5face.onnx * \param[in] params_file Path of parameter file, e.g ppyoloe/model.pdiparams, if the model format is ONNX, this parameter will be ignored * \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in "valid_cpu_backends" * \param[in] model_format Model format of the loaded model, default is ONNX format */ YOLOv5Face(const std::string& model_file, const std::string& params_file = "", const RuntimeOption& custom_option = RuntimeOption(), const ModelFormat& model_format = ModelFormat::ONNX); std::string ModelName() const { return "yolov5-face"; } /** \brief Predict the face detection result for an input image * * \param[in] im The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format * \param[in] result The output face detection result will be writen to this structure * \param[in] conf_threshold confidence threashold for postprocessing, default is 0.25 * \param[in] nms_iou_threshold iou threashold for NMS, default is 0.5 * \return true if the prediction successed, otherwise false */ virtual bool Predict(cv::Mat* im, FaceDetectionResult* result, float conf_threshold = 0.25, float nms_iou_threshold = 0.5); /*! @brief Argument for image preprocessing step, tuple of (width, height), decide the target size after resize, default size = {640, 640} */ std::vector size; // padding value, size should be the same as channels std::vector padding_value; // only pad to the minimum rectange which height and width is times of stride bool is_mini_pad; // while is_mini_pad = false and is_no_pad = true, // will resize the image to the set size bool is_no_pad; // if is_scale_up is false, the input image only can be zoom out, // the maximum resize scale cannot exceed 1.0 bool is_scale_up; // padding stride, for is_mini_pad int stride; /*! @brief Argument for image postprocessing step, setup the number of landmarks for per face (if have), default 5 in official yolov5face note that, the outupt tensor's shape must be: (1,n,4+1+2*landmarks_per_face+1=box+obj+landmarks+cls), default 5 */ int landmarks_per_face; private: bool Initialize(); bool Preprocess(Mat* mat, FDTensor* outputs, std::map>* im_info); bool Postprocess(FDTensor& infer_result, FaceDetectionResult* result, const std::map>& im_info, float conf_threshold, float nms_iou_threshold); bool IsDynamicInput() const { return is_dynamic_input_; } bool is_dynamic_input_; }; } // namespace facedet } // namespace vision } // namespace fastdeploy