// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. //NOLINT // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "fastdeploy/fastdeploy_model.h" #include "fastdeploy/vision/detection/contrib/yolov5/preprocessor.h" #include "fastdeploy/vision/detection/contrib/yolov5/postprocessor.h" namespace fastdeploy { namespace vision { namespace detection { /*! @brief YOLOv5 model object used when to load a YOLOv5 model exported by YOLOv5. */ class FASTDEPLOY_DECL YOLOv5 : public FastDeployModel { public: /** \brief Set path of model file and the configuration of runtime. * * \param[in] model_file Path of model file, e.g ./yolov5.onnx * \param[in] params_file Path of parameter file, e.g ppyoloe/model.pdiparams, if the model format is ONNX, this parameter will be ignored * \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in "valid_cpu_backends" * \param[in] model_format Model format of the loaded model, default is ONNX format */ YOLOv5(const std::string& model_file, const std::string& params_file = "", const RuntimeOption& custom_option = RuntimeOption(), const ModelFormat& model_format = ModelFormat::ONNX); std::string ModelName() const { return "yolov5"; } /** \brief DEPRECATED Predict the detection result for an input image, remove at 1.0 version * * \param[in] im The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format * \param[in] result The output detection result will be writen to this structure * \param[in] conf_threshold confidence threashold for postprocessing, default is 0.25 * \param[in] nms_threshold iou threashold for NMS, default is 0.5 * \return true if the prediction successed, otherwise false */ virtual bool Predict(cv::Mat* im, DetectionResult* result, float conf_threshold = 0.25, float nms_threshold = 0.5); /** \brief Predict the detection result for an input image * * \param[in] img The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format * \param[in] result The output detection result will be writen to this structure * \return true if the prediction successed, otherwise false */ virtual bool Predict(const cv::Mat& img, DetectionResult* result); /** \brief Predict the detection results for a batch of input images * * \param[in] imgs, The input image list, each element comes from cv::imread() * \param[in] results The output detection result list * \return true if the prediction successed, otherwise false */ virtual bool BatchPredict(const std::vector& imgs, std::vector* results); /// Get preprocessor reference of YOLOv5 virtual YOLOv5Preprocessor& GetPreprocessor() { return preprocessor_; } /// Get postprocessor reference of YOLOv5 virtual YOLOv5Postprocessor& GetPostprocessor() { return postprocessor_; } protected: bool Initialize(); YOLOv5Preprocessor preprocessor_; YOLOv5Postprocessor postprocessor_; }; } // namespace detection } // namespace vision } // namespace fastdeploy