// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "fastdeploy/fastdeploy_model.h" #include "opencv2/core/core.hpp" #include namespace fastdeploy { /** \brief All C++ FastDeploy Vision Models APIs are defined inside this namespace * */ namespace vision { enum FASTDEPLOY_DECL ResultType { UNKNOWN_RESULT, CLASSIFY, DETECTION, SEGMENTATION, OCR, MOT, FACE_DETECTION, FACE_ALIGNMENT, FACE_RECOGNITION, MATTING, MASK, KEYPOINT_DETECTION, HEADPOSE, }; struct FASTDEPLOY_DECL BaseResult { ResultType type = ResultType::UNKNOWN_RESULT; }; /*! @brief Classify result structure for all the image classify models */ struct FASTDEPLOY_DECL ClassifyResult : public BaseResult { ClassifyResult() = default; /// Classify result for an image std::vector label_ids; /// The confidence for each classify result std::vector scores; ResultType type = ResultType::CLASSIFY; /// Resize ClassifyResult data buffer void Resize(int size); /// Clear ClassifyResult void Clear(); /// Clear ClassifyResult and free the memory void Free(); /// Copy constructor ClassifyResult(const ClassifyResult& other) = default; /// Move assignment ClassifyResult& operator=(ClassifyResult&& other); /// Debug function, convert the result to string to print std::string Str(); }; /*! Mask structure, used in DetectionResult for instance segmentation models */ struct FASTDEPLOY_DECL Mask : public BaseResult { /// Mask data buffer std::vector data; /// Shape of mask std::vector shape; // (H,W) ... ResultType type = ResultType::MASK; /// clear Mask result void Clear(); /// Clear Mask result and free the memory void Free(); /// Return a mutable pointer of the mask data buffer void* Data() { return data.data(); } /// Return a pointer of the mask data buffer for read only const void* Data() const { return data.data(); } /// Reserve size for mask data buffer void Reserve(int size); /// Resize the mask data buffer void Resize(int size); /// Debug function, convert the result to string to print std::string Str(); }; /*! @brief Detection result structure for all the object detection models and instance segmentation models */ struct FASTDEPLOY_DECL DetectionResult : public BaseResult { DetectionResult() = default; /** \brief All the detected object boxes for an input image, the size of `boxes` is the number of detected objects, and the element of `boxes` is a array of 4 float values, means [xmin, ymin, xmax, ymax] */ std::vector> boxes; /** \brief The confidence for all the detected objects */ std::vector scores; /// The classify label for all the detected objects std::vector label_ids; /** \brief For instance segmentation model, `masks` is the predict mask for all the deteced objects */ std::vector masks; /// Shows if the DetectionResult has mask bool contain_masks = false; ResultType type = ResultType::DETECTION; /// Copy constructor DetectionResult(const DetectionResult& res); /// Move assignment DetectionResult& operator=(DetectionResult&& other); /// Clear DetectionResult void Clear(); /// Clear DetectionResult and free the memory void Free(); void Reserve(int size); void Resize(int size); /// Debug function, convert the result to string to print std::string Str(); }; /*! @brief KeyPoint Detection result structure for all the keypoint detection models */ struct FASTDEPLOY_DECL KeyPointDetectionResult : public BaseResult { /** \brief All the coordinates of detected keypoints for an input image, the size of `keypoints` is num_detected_objects * num_joints, and the element of `keypoint` is a array of 2 float values, means [x, y] */ std::vector> keypoints; //// The confidence for all the detected points std::vector scores; //// Number of joints for a detected object int num_joints = -1; ResultType type = ResultType::KEYPOINT_DETECTION; /// Clear KeyPointDetectionResult void Clear(); /// Clear KeyPointDetectionResult and free the memory void Free(); void Reserve(int size); void Resize(int size); /// Debug function, convert the result to string to print std::string Str(); }; struct FASTDEPLOY_DECL OCRResult : public BaseResult { std::vector> boxes; std::vector text; std::vector rec_scores; std::vector cls_scores; std::vector cls_labels; ResultType type = ResultType::OCR; void Clear(); std::string Str(); }; /*! @brief MOT(Multi-Object Tracking) result structure for all the MOT models */ struct FASTDEPLOY_DECL MOTResult : public BaseResult { /** \brief All the tracking object boxes for an input image, the size of `boxes` is the number of tracking objects, and the element of `boxes` is a array of 4 float values, means [xmin, ymin, xmax, ymax] */ std::vector> boxes; /** \brief All the tracking object ids */ std::vector ids; /** \brief The confidence for all the tracking objects */ std::vector scores; /** \brief The classify label id for all the tracking object */ std::vector class_ids; ResultType type = ResultType::MOT; /// Clear MOT result void Clear(); /// Debug function, convert the result to string to print std::string Str(); }; /*! @brief Face detection result structure for all the face detection models */ struct FASTDEPLOY_DECL FaceDetectionResult : public BaseResult { /** \brief All the detected object boxes for an input image, the size of `boxes` is the number of detected objects, and the element of `boxes` is a array of 4 float values, means [xmin, ymin, xmax, ymax] */ std::vector> boxes; /** \brief * If the model detect face with landmarks, every detected object box correspoing to a landmark, which is a array of 2 float values, means location [x,y] */ std::vector> landmarks; /** \brief * Indicates the confidence of all targets detected from a single image, and the number of elements is consistent with boxes.size() */ std::vector scores; ResultType type = ResultType::FACE_DETECTION; /** \brief * `landmarks_per_face` indicates the number of face landmarks for each detected face * if the model's output contains face landmarks (such as YOLOv5Face, SCRFD, ...) */ int landmarks_per_face; FaceDetectionResult() { landmarks_per_face = 0; } FaceDetectionResult(const FaceDetectionResult& res); /// Clear FaceDetectionResult void Clear(); /// Clear FaceDetectionResult and free the memory void Free(); void Reserve(int size); void Resize(int size); /// Debug function, convert the result to string to print std::string Str(); }; /*! @brief Face Alignment result structure for all the face alignment models */ struct FASTDEPLOY_DECL FaceAlignmentResult : public BaseResult { /** \brief All the coordinates of detected landmarks for an input image, and the element of `landmarks` is a array of 2 float values, means [x, y] */ std::vector> landmarks; ResultType type = ResultType::FACE_ALIGNMENT; /// Clear FaceAlignmentResult void Clear(); /// Clear FaceAlignmentResult and free the memory void Free(); void Reserve(int size); void Resize(int size); /// Debug function, convert the result to string to print std::string Str(); }; /*! @brief Segmentation result structure for all the segmentation models */ struct FASTDEPLOY_DECL SegmentationResult : public BaseResult { SegmentationResult() = default; /** \brief * `label_map` stores the pixel-level category labels for input image. the number of pixels is equal to label_map.size() */ std::vector label_map; /** \brief * `score_map` stores the probability of the predicted label for each pixel of input image. */ std::vector score_map; /// The output shape, means [H, W] std::vector shape; /// SegmentationResult whether containing score_map bool contain_score_map = false; /// Copy constructor SegmentationResult(const SegmentationResult& other) = default; /// Move assignment SegmentationResult& operator=(SegmentationResult&& other); ResultType type = ResultType::SEGMENTATION; /// Clear Segmentation result void Clear(); /// Clear Segmentation result and free the memory void Free(); void Reserve(int size); void Resize(int size); /// Debug function, convert the result to string to print std::string Str(); }; /*! @brief Face recognition result structure for all the Face recognition models */ struct FASTDEPLOY_DECL FaceRecognitionResult : public BaseResult { /** \brief The feature embedding that represents the final extraction of the face recognition model can be used to calculate the feature similarity between faces. */ std::vector embedding; ResultType type = ResultType::FACE_RECOGNITION; FaceRecognitionResult() {} FaceRecognitionResult(const FaceRecognitionResult& res); /// Clear FaceRecognitionResult void Clear(); /// Clear FaceRecognitionResult and free the memory void Free(); void Reserve(int size); void Resize(int size); /// Debug function, convert the result to string to print std::string Str(); }; /*! @brief Matting result structure for all the Matting models */ struct FASTDEPLOY_DECL MattingResult : public BaseResult { /** \brief `alpha` is a one-dimensional vector, which is the predicted alpha transparency value. The range of values is [0., 1.], and the length is hxw. h, w are the height and width of the input image */ std::vector alpha; // h x w /** \brief If the model can predict foreground, `foreground` save the predicted foreground image, the shape is [hight,width,channel] generally. */ std::vector foreground; // h x w x c (c=3 default) /** \brief * The shape of output result, when contain_foreground == false, shape only contains (h, w), when contain_foreground == true, shape contains (h, w, c), and c is generally 3 */ std::vector shape; /** \brief If the model can predict alpha matte and foreground, contain_foreground = true, default false */ bool contain_foreground = false; ResultType type = ResultType::MATTING; MattingResult() {} MattingResult(const MattingResult& res); /// Clear matting result void Clear(); /// Free matting result void Free(); void Reserve(int size); void Resize(int size); /// Debug function, convert the result to string to print std::string Str(); }; /*! @brief HeadPose result structure for all the headpose models */ struct FASTDEPLOY_DECL HeadPoseResult : public BaseResult { /** \brief EulerAngles for an input image, and the element of `euler_angles` is a vector, contains {yaw, pitch, roll} */ std::vector euler_angles; ResultType type = ResultType::HEADPOSE; /// Clear HeadPoseResult void Clear(); /// Clear HeadPoseResult and free the memory void Free(); void Reserve(int size); void Resize(int size); /// Debug function, convert the result to string to print std::string Str(); }; } // namespace vision } // namespace fastdeploy