English | [简体中文](README_CN.md) # MODNet Python Deployment Example Before deployment, two steps require confirmation - 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md) - 2. Install FastDeploy Python whl package. Refer to [FastDeploy Python Installation](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md) This directory provides examples that `infer.py` fast finishes the deployment of MODNet on CPU/GPU and GPU accelerated by TensorRT. The script is as follows ```bash # Download the example code for deployment git clone https://github.com/PaddlePaddle/FastDeploy.git cd examples/vision/matting/modnet/python/ # Download modnet model files and test images wget https://bj.bcebos.com/paddlehub/fastdeploy/modnet_photographic_portrait_matting.onnx wget https://bj.bcebos.com/paddlehub/fastdeploy/matting_input.jpg wget https://bj.bcebos.com/paddlehub/fastdeploy/matting_bgr.jpg # CPU inference python infer.py --model modnet_photographic_portrait_matting.onnx --image matting_input.jpg --bg matting_bgr.jpg --device cpu # GPU inference python infer.py --model modnet_photographic_portrait_matting.onnx --image matting_input.jpg --bg matting_bgr.jpg --device gpu # TensorRT inference on GPU python infer.py --model modnet_photographic_portrait_matting.onnx --image matting_input.jpg --bg matting_bgr.jpg --device gpu --use_trt True ``` The visualized result after running is as follows
## MODNet Python Interface ```python fastdeploy.vision.matting.MODNet(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX) ``` MODNet model loading and initialization, among which model_file is the exported ONNX model format **Parameter** > * **model_file**(str): Model file path > * **params_file**(str): Parameter file path. No need to set when the model is in ONNX format > * **runtime_option**(RuntimeOption): Backend inference configuration. None by default, which is the default configuration > * **model_format**(ModelFormat): Model format. ONNX format by default ### predict function > ```python > MODNet.predict(image_data) > ``` > > Model prediction interface. Input images and output matting results. > > **Parameter** > > > * **image_data**(np.ndarray): Input data in HWC or BGR format > **Return** > > > Return `fastdeploy.vision.MattingResult` structure. Refer to [Vision Model Prediction Results](../../../../../docs/api/vision_results/) for its description. ### Class Member Property #### Pre-processing Parameter Users can modify the following pre-processing parameters to their needs, which affects the final inference and deployment results > > * **size**(list[int]): This parameter changes the size of the resize during preprocessing, containing two integer elements for [width, height] with default value [256, 256] > > * **alpha**(list[float]): Preprocess normalized alpha, and calculated as `x'=x*alpha+beta`. alpha defaults to [1. / 127.5, 1.f / 127.5, 1. / 127.5] > > * **beta**(list[float]): Preprocess normalized beta, and calculated as `x'=x*alpha+beta`. beta defaults to [-1.f, -1.f, -1.f] > > * **swap_rb**(bool): Whether to convert BGR to RGB in pre-processing. Default True ## Other Documents - [MODNet Model Description](..) - [MODNet C++ Deployment](../cpp) - [Model Prediction Results](../../../../../docs/api/vision_results/) - [How to switch the model inference backend engine](../../../../../docs/en/faq/how_to_change_backend.md)