[English](README.md) | 简体中文 # YOLOv5 C#部署示例 本目录下提供`infer.cs`来调用C# API快速完成YOLOv5模型在CPU/GPU上部署的示例。 在部署前,需确认以下两个步骤 - 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) - 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) 在Windows下执行如下操作完成编译测试,支持此模型需保证FastDeploy版本1.0.4以上(x.x.x>=1.0.4) ## 1. 下载C#包管理程序nuget客户端 > https://dist.nuget.org/win-x86-commandline/v6.4.0/nuget.exe 下载完成后将该程序添加到环境变量**PATH**中 ## 2. 下载模型文件和测试图片 > https://bj.bcebos.com/paddlehub/fastdeploy/yolov5s.onnx > https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg ## 3. 编译示例代码 本文档编译的示例代码可在解压的库中找到,编译工具依赖VS 2019的安装,**Windows打开x64 Native Tools Command Prompt for VS 2019命令工具**,通过如下命令开始编译 ```shell cd D:\Download\fastdeploy-win-x64-gpu-x.x.x\examples\vision\detection\yolov5\csharp mkdir build && cd build cmake .. -G "Visual Studio 16 2019" -A x64 -DFASTDEPLOY_INSTALL_DIR=D:\Download\fastdeploy-win-x64-gpu-x.x.x -DCUDA_DIRECTORY="C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v11.2" nuget restore msbuild infer_demo.sln /m:4 /p:Configuration=Release /p:Platform=x64 ``` 关于使用Visual Studio 2019创建sln工程,或者CMake工程等方式编译的更详细信息,可参考如下文档 - [在 Windows 使用 FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md) - [FastDeploy C++库在Windows上的多种使用方式](../../../../../docs/cn/faq/use_sdk_on_windows_build.md) ## 4. 运行可执行程序 注意Windows上运行时,需要将FastDeploy依赖的库拷贝至可执行程序所在目录, 或者配置环境变量。FastDeploy提供了工具帮助我们快速将所有依赖库拷贝至可执行程序所在目录,通过如下命令将所有依赖的dll文件拷贝至可执行程序所在的目录(可能生成的可执行文件在Release下还有一层目录,这里假设生成的可执行文件在Release处) ```shell cd D:\Download\fastdeploy-win-x64-gpu-x.x.x fastdeploy_init.bat install %cd% D:\Download\fastdeploy-win-x64-gpu-x.x.x\examples\vision\detection\yolov5\csharp\build\Release ``` 将dll拷贝到当前路径后,准备好模型和图片,使用如下命令运行可执行程序即可 ```shell cd Release infer_demo yolov5s.onnx 000000014439.jpg 0 # CPU infer_demo yolov5s.onnx 000000014439.jpg 1 # GPU ``` ## YOLOv5 C#接口 ### 模型 ```c# fastdeploy.vision.detection.YOLOv5( string model_file, string params_file, fastdeploy.RuntimeOption runtime_option = null, fastdeploy.ModelFormat model_format = ModelFormat.ONNX) ``` > YOLOv5 模型加载和初始化。 > **参数** >> * **model_file**(str): 模型文件路径 >> * **params_file**(str): 参数文件路径,当模型格式为ONNX时,此参数传入空字符串即可 >> * **runtime_option**(RuntimeOption): 后端推理配置,默认为null,即采用默认配置 >> * **model_format**(ModelFormat): 模型格式,默认为ONNX格式 #### Predict函数 ```c# fastdeploy.DetectionResult Predict(OpenCvSharp.Mat im) ``` > 模型预测接口,输入图像直接输出检测结果。 > > **参数** > >> * **im**(Mat): 输入图像,注意需为HWC,BGR格式 > > **返回值** > >> * **result**(DetectionResult): 检测结果,包括检测框,各个框的置信度, DetectionResult说明参考[视觉模型预测结果](../../../../../docs/api/vision_results/) - [模型介绍](../../) - [Python部署](../python) - [视觉模型预测结果](../../../../../docs/api/vision_results/) - [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)