English | [简体中文](README_CN.md) # YOLOv5 C Deployment Example This directory provides `infer.c` to finish the deployment of YOLOv5 on CPU/GPU. Before deployment, two steps require confirmation - 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md) - 2. Download the precompiled deployment library and samples code according to your development environment. Refer to [FastDeploy Precompiled Library](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md) Taking inference on Linux as an example, the compilation test can be completed by executing the following command in this directory. FastDeploy version 1.0.4 or above (x.x.x>=1.0.4) is required to support this model. ```bash # 1. # Download the YOLOv5 model file and test images wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov5s.onnx wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg # CPU inference ./infer_demo yolov5s.onnx 000000014439.jpg 0 # GPU inference ./infer_demo yolov5s.onnx 000000014439.jpg 1 ``` The above command works for Linux or MacOS. For SDK use-pattern in Windows, refer to: - [How to use FastDeploy C++ SDK in Windows](../../../../../docs/en/faq/use_sdk_on_windows.md) ## YOLOv5 C Interface ### RuntimeOption ```c FD_C_RuntimeOptionWrapper* FD_C_CreateRuntimeOptionWrapper() ``` > Create a RuntimeOption object, and return a pointer to manipulate it. > > **Return** > > * **fd_c_runtime_option_wrapper**(FD_C_RuntimeOptionWrapper*): Pointer to manipulate RuntimeOption object. ```c void FD_C_RuntimeOptionWrapperUseCpu( FD_C_RuntimeOptionWrapper* fd_c_runtime_option_wrapper) ``` > Enable Cpu inference. > > **Params** > > * **fd_c_runtime_option_wrapper**(FD_C_RuntimeOptionWrapper*): Pointer to manipulate RuntimeOption object. ```c void FD_C_RuntimeOptionWrapperUseGpu( FD_C_RuntimeOptionWrapper* fd_c_runtime_option_wrapper, int gpu_id) ``` > Enable Gpu inference. > > **Params** > > * **fd_c_runtime_option_wrapper**(FD_C_RuntimeOptionWrapper*): Pointer to manipulate RuntimeOption object. > * **gpu_id**(int): gpu id ### Model ```c FD_C_YOLOv5Wrapper* FD_C_CreateYOLOv5Wrapper( const char* model_file, const char* params_file, const char* config_file, FD_C_RuntimeOptionWrapper* runtime_option, const FD_C_ModelFormat model_format) ``` > Create a YOLOv5 model object, and return a pointer to manipulate it. > > **Params** > > * **model_file**(str): Model file path > * **params_file**(str): Parameter file path,when model format is onnx,this can be empty string > * **runtime_option**(FD_C_RuntimeOptionWrapper*): Backend inference configuration. None by default, which is the default configuration > * **model_format**(FD_C_ModelFormat): Model format. > > **Return** > * **fd_c_yolov5_wrapper**(FD_C_YOLOv5Wrapper*): Pointer to manipulate YOLOv5 object. #### Read and write image ```c FD_C_Mat FD_C_Imread(const char* imgpath) ``` > Read an image, and return a pointer to cv::Mat. > > **Params** > > * **imgpath**(const char*): image path > > **Return** > > * **imgmat**(FD_C_Mat): pointer to cv::Mat object which holds the image. ```c FD_C_Bool FD_C_Imwrite(const char* savepath, FD_C_Mat img); ``` > Write image to a file. > > **Params** > > * **savepath**(const char*): save path > * **img**(FD_C_Mat): pointer to cv::Mat object > > **Return** > > * **result**(FD_C_Bool): bool to indicate success or failure #### Prediction ```c FD_C_Bool FD_C_YOLOv5WrapperPredict( __fd_take FD_C_YOLOv5Wrapper* fd_c_yolov5_wrapper, FD_C_Mat img, FD_C_DetectionResult* fd_c_detection_result) ``` > > Predict an image, and generate detection result. > > **Params** > * **fd_c_yolov5_wrapper**(FD_C_YOLOv5Wrapper*): Pointer to manipulate YOLOv5 object. > * **img**(FD_C_Mat): pointer to cv::Mat object, which can be obained by FD_C_Imread interface > * **fd_c_detection_result**FD_C_DetectionResult*): Detection result, including detection box and confidence of each box. Refer to [Vision Model Prediction Result](../../../../../docs/api/vision_results/) for DetectionResults #### Result ```c FD_C_Mat FD_C_VisDetection(FD_C_Mat im, FD_C_DetectionResult* fd_detection_result, float score_threshold, int line_size, float font_size); ``` > > Visualize detection results and return visualization image. > > **Params** > * **im**(FD_C_Mat): pointer to input image > * **fd_detection_result**(FD_C_DetectionResult*): pointer to C DetectionResult structure > * **score_threshold**(float): score threshold > * **line_size**(int): line size > * **font_size**(float): font size > > **Return** > * **vis_im**(FD_C_Mat): pointer to visualization image. - [Model Description](../../) - [Python Deployment](../python) - [Vision Model prediction results](../../../../../docs/api/vision_results/) - [How to switch the model inference backend engine](../../../../../docs/en/faq/how_to_change_backend.md)