English | [简体中文](README_CN.md) # RKYOLO Python Deployment Example Two steps before deployment - 1. Software and hardware should meet the requirements. Refer to [FastDeploy Environment Requirements](../../../../../docs/cn/build_and_install/rknpu2.md) This directory provides examples that `infer.py` fast finishes the deployment of Picodet on RKNPU. The script is as follows ```bash # Download the example code for deployment git clone https://github.com/PaddlePaddle/FastDeploy.git cd FastDeploy/examples/vision/detection/rkyolo/python # Download images wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg # copy model cp -r ./model /path/to/FastDeploy/examples/vision/detection/rkyolo/python # Inference python3 infer.py --model_file ./model/ \ --image 000000014439.jpg ``` ## Note The model needs to be in NHWC format on RKNPU. The normalized image will be embedded in the RKNN model. Therefore, when we deploy with FastDeploy, call DisablePermute(C++) or `disable_permute(Python)` to disable normalization and data format conversion during preprocessing. ## Other Documents - [PaddleDetection Model Description](..) - [PaddleDetection C++ Deployment](../cpp) - [model prediction Results](../../../../../docs/api/vision_results/) - [Convert PaddleDetection RKNN Model Files](../README.md)