# Python推理 在运行demo前,需确认以下两个步骤 - 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../docs/cn/build_and_install/download_prebuilt_libraries.md) - 2. FastDeploy Python whl包安装,参考[FastDeploy Python安装](../../../docs/cn/build_and_install/download_prebuilt_libraries.md) 本文档以 PaddleClas 分类模型 MobileNetV2 为例展示 CPU 上的推理示例 ## 1. 获取模型 ``` python import fastdeploy as fd model_url = "https://bj.bcebos.com/fastdeploy/models/mobilenetv2.tgz" fd.download_and_decompress(model_url, path=".") ``` ## 2. 配置后端 ``` python option = fd.RuntimeOption() option.set_model_path("mobilenetv2/inference.pdmodel", "mobilenetv2/inference.pdiparams") # **** CPU 配置 **** option.use_cpu() option.use_ort_backend() option.set_cpu_thread_num(12) # 初始化构造runtime runtime = fd.Runtime(option) # 获取模型输入名 input_name = runtime.get_input_info(0).name # 构造随机数据进行推理 results = runtime.infer({ input_name: np.random.rand(1, 3, 224, 224).astype("float32") }) print(results[0].shape) ``` 加载完成,会输出提示如下,说明初始化的后端,以及运行的硬件设备 ``` [INFO] fastdeploy/fastdeploy_runtime.cc(283)::Init Runtime initialized with Backend::OrtBackend in device Device::CPU. ``` ## 其它文档 - [Runtime C++ 示例](../cpp) - [切换模型推理的硬件和后端](../../../docs/cn/faq/how_to_change_backend.md)