// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "fastdeploy/vision.h" #ifdef WIN32 const char sep = '\\'; #else const char sep = '/'; #endif void CpuInfer(const std::string& det_model_dir, const std::string& cls_model_dir, const std::string& rec_model_dir, const std::string& rec_label_file, const std::string& image_file) { auto det_model_file = det_model_dir + sep + "inference.pdmodel"; auto det_params_file = det_model_dir + sep + "inference.pdiparams"; auto cls_model_file = cls_model_dir + sep + "inference.pdmodel"; auto cls_params_file = cls_model_dir + sep + "inference.pdiparams"; auto rec_model_file = rec_model_dir + sep + "inference.pdmodel"; auto rec_params_file = rec_model_dir + sep + "inference.pdiparams"; auto rec_label = rec_label_file; fastdeploy::vision::ocr::DBDetector det_model; fastdeploy::vision::ocr::Classifier cls_model; fastdeploy::vision::ocr::Recognizer rec_model; if (!det_model_dir.empty()) { auto det_option = fastdeploy::RuntimeOption(); det_option.UseCpu(); det_model = fastdeploy::vision::ocr::DBDetector( det_model_file, det_params_file, det_option); if (!det_model.Initialized()) { std::cerr << "Failed to initialize det_model." << std::endl; return; } } if (!cls_model_dir.empty()) { auto cls_option = fastdeploy::RuntimeOption(); cls_option.UseCpu(); cls_model = fastdeploy::vision::ocr::Classifier( cls_model_file, cls_params_file, cls_option); if (!cls_model.Initialized()) { std::cerr << "Failed to initialize cls_model." << std::endl; return; } } if (!rec_model_dir.empty()) { auto rec_option = fastdeploy::RuntimeOption(); rec_option.UseCpu(); rec_model = fastdeploy::vision::ocr::Recognizer( rec_model_file, rec_params_file, rec_label, rec_option); if (!rec_model.Initialized()) { std::cerr << "Failed to initialize rec_model." << std::endl; return; } } auto ocrv3_app = fastdeploy::application::ocrsystem::PPOCRSystemv3( &det_model, &cls_model, &rec_model); auto im = cv::imread(image_file); auto im_bak = im.clone(); fastdeploy::vision::OCRResult res; //开始预测 if (!ocrv3_app.Predict(&im, &res)) { std::cerr << "Failed to predict." << std::endl; return; } //输出预测信息 std::cout << res.Str() << std::endl; //可视化 auto vis_img = fastdeploy::vision::Visualize::VisOcr(im_bak, res); cv::imwrite("vis_result.jpg", vis_img); std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl; } void GpuInfer(const std::string& det_model_dir, const std::string& cls_model_dir, const std::string& rec_model_dir, const std::string& rec_label_file, const std::string& image_file) { auto det_model_file = det_model_dir + sep + "inference.pdmodel"; auto det_params_file = det_model_dir + sep + "inference.pdiparams"; auto cls_model_file = cls_model_dir + sep + "inference.pdmodel"; auto cls_params_file = cls_model_dir + sep + "inference.pdiparams"; auto rec_model_file = rec_model_dir + sep + "inference.pdmodel"; auto rec_params_file = rec_model_dir + sep + "inference.pdiparams"; auto rec_label = rec_label_file; fastdeploy::vision::ocr::DBDetector det_model; fastdeploy::vision::ocr::Classifier cls_model; fastdeploy::vision::ocr::Recognizer rec_model; //准备模型 if (!det_model_dir.empty()) { auto det_option = fastdeploy::RuntimeOption(); det_option.UseGpu(); det_model = fastdeploy::vision::ocr::DBDetector( det_model_file, det_params_file, det_option); if (!det_model.Initialized()) { std::cerr << "Failed to initialize det_model." << std::endl; return; } } if (!cls_model_dir.empty()) { auto cls_option = fastdeploy::RuntimeOption(); cls_option.UseGpu(); cls_model = fastdeploy::vision::ocr::Classifier( cls_model_file, cls_params_file, cls_option); if (!cls_model.Initialized()) { std::cerr << "Failed to initialize cls_model." << std::endl; return; } } if (!rec_model_dir.empty()) { auto rec_option = fastdeploy::RuntimeOption(); rec_option.UseGpu(); rec_model = fastdeploy::vision::ocr::Recognizer( rec_model_file, rec_params_file, rec_label, rec_option); if (!rec_model.Initialized()) { std::cerr << "Failed to initialize rec_model." << std::endl; return; } } auto ocrv3_app = fastdeploy::application::ocrsystem::PPOCRSystemv3( &det_model, &cls_model, &rec_model); auto im = cv::imread(image_file); auto im_bak = im.clone(); fastdeploy::vision::OCRResult res; //开始预测 if (!ocrv3_app.Predict(&im, &res)) { std::cerr << "Failed to predict." << std::endl; return; } //输出预测信息 std::cout << res.Str() << std::endl; //可视化 auto vis_img = fastdeploy::vision::Visualize::VisOcr(im_bak, res); cv::imwrite("vis_result.jpg", vis_img); std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl; } void TrtInfer(const std::string& det_model_dir, const std::string& cls_model_dir, const std::string& rec_model_dir, const std::string& rec_label_file, const std::string& image_file) { auto det_model_file = det_model_dir + sep + "inference.pdmodel"; auto det_params_file = det_model_dir + sep + "inference.pdiparams"; auto cls_model_file = cls_model_dir + sep + "inference.pdmodel"; auto cls_params_file = cls_model_dir + sep + "inference.pdiparams"; auto rec_model_file = rec_model_dir + sep + "inference.pdmodel"; auto rec_params_file = rec_model_dir + sep + "inference.pdiparams"; auto rec_label = rec_label_file; fastdeploy::vision::ocr::DBDetector det_model; fastdeploy::vision::ocr::Classifier cls_model; fastdeploy::vision::ocr::Recognizer rec_model; //准备模型 if (!det_model_dir.empty()) { auto det_option = fastdeploy::RuntimeOption(); det_option.UseGpu(); det_option.UseTrtBackend(); det_option.SetTrtInputShape("x", {1, 3, 50, 50}, {1, 3, 640, 640}, {1, 3, 960, 960}); det_model = fastdeploy::vision::ocr::DBDetector( det_model_file, det_params_file, det_option); if (!det_model.Initialized()) { std::cerr << "Failed to initialize det_model." << std::endl; return; } } if (!cls_model_dir.empty()) { auto cls_option = fastdeploy::RuntimeOption(); cls_option.UseGpu(); cls_option.UseTrtBackend(); cls_option.SetTrtInputShape("x", {1, 3, 48, 192}); cls_model = fastdeploy::vision::ocr::Classifier( cls_model_file, cls_params_file, cls_option); if (!cls_model.Initialized()) { std::cerr << "Failed to initialize cls_model." << std::endl; return; } } if (!rec_model_dir.empty()) { auto rec_option = fastdeploy::RuntimeOption(); rec_option.UseGpu(); rec_option.UseTrtBackend(); rec_option.SetTrtInputShape("x", {1, 3, 48, 10}, {1, 3, 48, 320}, {1, 3, 48, 2000}); rec_model = fastdeploy::vision::ocr::Recognizer( rec_model_file, rec_params_file, rec_label, rec_option); if (!rec_model.Initialized()) { std::cerr << "Failed to initialize rec_model." << std::endl; return; } } auto ocrv3_app = fastdeploy::application::ocrsystem::PPOCRSystemv3( &det_model, &cls_model, &rec_model); auto im = cv::imread(image_file); auto im_bak = im.clone(); fastdeploy::vision::OCRResult res; //开始预测 if (!ocrv3_app.Predict(&im, &res)) { std::cerr << "Failed to predict." << std::endl; return; } //输出预测信息 std::cout << res.Str() << std::endl; //可视化 auto vis_img = fastdeploy::vision::Visualize::VisOcr(im_bak, res); cv::imwrite("vis_result.jpg", vis_img); std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl; } int main(int argc, char* argv[]) { if (argc < 7) { std::cout << "Usage: infer_demo path/to/det_model path/to/cls_model " "path/to/rec_model path/to/rec_label_file path/to/image " "run_option, " "e.g ./infer_demo ./ch_PP-OCRv3_det_infer " "./ch_ppocr_mobile_v2.0_cls_infer ./ch_PP-OCRv3_rec_infer " "./ppocr_keys_v1.txt ./12.jpg 0" << std::endl; std::cout << "The data type of run_option is int, 0: run with cpu; 1: run " "with gpu; 2: run with gpu and use tensorrt backend." << std::endl; return -1; } if (std::atoi(argv[6]) == 0) { CpuInfer(argv[1], argv[2], argv[3], argv[4], argv[5]); } else if (std::atoi(argv[6]) == 1) { GpuInfer(argv[1], argv[2], argv[3], argv[4], argv[5]); } else if (std::atoi(argv[6]) == 2) { TrtInfer(argv[1], argv[2], argv[3], argv[4], argv[5]); } return 0; }