// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "fastdeploy/runtime.h" #include "fastdeploy/utils/unique_ptr.h" #include "fastdeploy/utils/utils.h" #ifdef ENABLE_ORT_BACKEND #include "fastdeploy/backends/ort/ort_backend.h" #endif #ifdef ENABLE_TRT_BACKEND #include "fastdeploy/backends/tensorrt/trt_backend.h" #endif #ifdef ENABLE_PADDLE_BACKEND #include "fastdeploy/backends/paddle/paddle_backend.h" #endif #ifdef ENABLE_POROS_BACKEND #include "fastdeploy/backends/poros/poros_backend.h" #endif #ifdef ENABLE_OPENVINO_BACKEND #include "fastdeploy/backends/openvino/ov_backend.h" #endif #ifdef ENABLE_LITE_BACKEND #include "fastdeploy/backends/lite/lite_backend.h" #endif namespace fastdeploy { std::vector GetAvailableBackends() { std::vector backends; #ifdef ENABLE_ORT_BACKEND backends.push_back(Backend::ORT); #endif #ifdef ENABLE_TRT_BACKEND backends.push_back(Backend::TRT); #endif #ifdef ENABLE_PADDLE_BACKEND backends.push_back(Backend::PDINFER); #endif #ifdef ENABLE_POROS_BACKEND backends.push_back(Backend::POROS); #endif #ifdef ENABLE_OPENVINO_BACKEND backends.push_back(Backend::OPENVINO); #endif #ifdef ENABLE_LITE_BACKEND backends.push_back(Backend::LITE); #endif return backends; } bool IsBackendAvailable(const Backend& backend) { std::vector backends = GetAvailableBackends(); for (size_t i = 0; i < backends.size(); ++i) { if (backend == backends[i]) { return true; } } return false; } std::string Str(const Backend& b) { if (b == Backend::ORT) { return "Backend::ORT"; } else if (b == Backend::TRT) { return "Backend::TRT"; } else if (b == Backend::PDINFER) { return "Backend::PDINFER"; } else if (b == Backend::POROS) { return "Backend::POROS"; } else if (b == Backend::OPENVINO) { return "Backend::OPENVINO"; } else if (b == Backend::LITE) { return "Backend::LITE"; } return "UNKNOWN-Backend"; } std::string Str(const ModelFormat& f) { if (f == ModelFormat::PADDLE) { return "ModelFormat::PADDLE"; } else if (f == ModelFormat::ONNX) { return "ModelFormat::ONNX"; } else if (f == ModelFormat::TORCHSCRIPT) { return "ModelFormat::TORCHSCRIPT"; } return "UNKNOWN-ModelFormat"; } std::ostream& operator<<(std::ostream& out, const Backend& backend) { if (backend == Backend::ORT) { out << "Backend::ORT"; } else if (backend == Backend::TRT) { out << "Backend::TRT"; } else if (backend == Backend::PDINFER) { out << "Backend::PDINFER"; } else if (backend == Backend::OPENVINO) { out << "Backend::OPENVINO"; } else if (backend == Backend::POROS) { out << "Backend::POROS"; } else if (backend == Backend::LITE) { out << "Backend::LITE"; } out << "UNKNOWN-Backend"; return out; } std::ostream& operator<<(std::ostream& out, const ModelFormat& format) { if (format == ModelFormat::PADDLE) { out << "ModelFormat::PADDLE"; } else if (format == ModelFormat::ONNX) { out << "ModelFormat::ONNX"; } else if (format == ModelFormat::TORCHSCRIPT) { out << "ModelFormat::TORCHSCRIPT"; } out << "UNKNOWN-ModelFormat"; return out; } bool CheckModelFormat(const std::string& model_file, const ModelFormat& model_format) { if (model_format == ModelFormat::PADDLE) { if (model_file.size() < 8 || model_file.substr(model_file.size() - 8, 8) != ".pdmodel") { FDERROR << "With model format of ModelFormat::PADDLE, the model file " "should ends with `.pdmodel`, but now it's " << model_file << std::endl; return false; } } else if (model_format == ModelFormat::ONNX) { if (model_file.size() < 5 || model_file.substr(model_file.size() - 5, 5) != ".onnx") { FDERROR << "With model format of ModelFormat::ONNX, the model file " "should ends with `.onnx`, but now it's " << model_file << std::endl; return false; } } else if (model_format == ModelFormat::TORCHSCRIPT) { if (model_file.size() < 3 || model_file.substr(model_file.size() - 3, 3) != ".pt") { FDERROR << "With model format of ModelFormat::TORCHSCRIPT, the model file " "should ends with `.pt`, but now it's " << model_file << std::endl; return false; } } else { FDERROR << "Only support model format with frontend ModelFormat::PADDLE / " "ModelFormat::ONNX / ModelFormat::TORCHSCRIPT." << std::endl; return false; } return true; } ModelFormat GuessModelFormat(const std::string& model_file) { if (model_file.size() > 8 && model_file.substr(model_file.size() - 8, 8) == ".pdmodel") { FDINFO << "Model Format: PaddlePaddle." << std::endl; return ModelFormat::PADDLE; } else if (model_file.size() > 5 && model_file.substr(model_file.size() - 5, 5) == ".onnx") { FDINFO << "Model Format: ONNX." << std::endl; return ModelFormat::ONNX; } else if (model_file.size() > 3 && model_file.substr(model_file.size() - 3, 3) == ".pt") { FDINFO << "Model Format: Torchscript." << std::endl; return ModelFormat::TORCHSCRIPT; } FDERROR << "Cannot guess which model format you are using, please set " "RuntimeOption::model_format manually." << std::endl; return ModelFormat::PADDLE; } void RuntimeOption::SetModelPath(const std::string& model_path, const std::string& params_path, const ModelFormat& format) { if (format == ModelFormat::PADDLE) { model_file = model_path; params_file = params_path; model_format = ModelFormat::PADDLE; } else if (format == ModelFormat::ONNX) { model_file = model_path; model_format = ModelFormat::ONNX; } else if (format == ModelFormat::TORCHSCRIPT) { model_file = model_path; model_format = ModelFormat::TORCHSCRIPT; } else { FDASSERT( false, "The model format only can be ModelFormat::PADDLE/ModelFormat::ONNX/ModelFormat::TORCHSCRIPT."); } } void RuntimeOption::UseGpu(int gpu_id) { #ifdef WITH_GPU device = Device::GPU; device_id = gpu_id; #else FDWARNING << "The FastDeploy didn't compile with GPU, will force to use CPU." << std::endl; device = Device::CPU; #endif } void RuntimeOption::UseCpu() { device = Device::CPU; } void RuntimeOption::SetCpuThreadNum(int thread_num) { FDASSERT(thread_num > 0, "The thread_num must be greater than 0."); cpu_thread_num = thread_num; } void RuntimeOption::SetOrtGraphOptLevel(int level) { std::vector supported_level{-1, 0, 1, 2}; auto valid_level = std::find(supported_level.begin(), supported_level.end(), level) != supported_level.end(); FDASSERT(valid_level, "The level must be -1, 0, 1, 2."); ort_graph_opt_level = level; } // use paddle inference backend void RuntimeOption::UsePaddleBackend() { #ifdef ENABLE_PADDLE_BACKEND backend = Backend::PDINFER; #else FDASSERT(false, "The FastDeploy didn't compile with Paddle Inference."); #endif } // use onnxruntime backend void RuntimeOption::UseOrtBackend() { #ifdef ENABLE_ORT_BACKEND backend = Backend::ORT; #else FDASSERT(false, "The FastDeploy didn't compile with OrtBackend."); #endif } // use poros backend void RuntimeOption::UsePorosBackend() { #ifdef ENABLE_POROS_BACKEND backend = Backend::POROS; #else FDASSERT(false, "The FastDeploy didn't compile with PorosBackend."); #endif } void RuntimeOption::UseTrtBackend() { #ifdef ENABLE_TRT_BACKEND backend = Backend::TRT; #else FDASSERT(false, "The FastDeploy didn't compile with TrtBackend."); #endif } void RuntimeOption::UseOpenVINOBackend() { #ifdef ENABLE_OPENVINO_BACKEND backend = Backend::OPENVINO; #else FDASSERT(false, "The FastDeploy didn't compile with OpenVINO."); #endif } void RuntimeOption::UseLiteBackend() { #ifdef ENABLE_LITE_BACKEND backend = Backend::LITE; #else FDASSERT(false, "The FastDeploy didn't compile with Paddle Lite."); #endif } void RuntimeOption::SetPaddleMKLDNN(bool pd_mkldnn) { pd_enable_mkldnn = pd_mkldnn; } void RuntimeOption::DeletePaddleBackendPass(const std::string& pass_name) { pd_delete_pass_names.push_back(pass_name); } void RuntimeOption::EnablePaddleLogInfo() { pd_enable_log_info = true; } void RuntimeOption::DisablePaddleLogInfo() { pd_enable_log_info = false; } void RuntimeOption::EnablePaddleToTrt() { FDASSERT(backend == Backend::TRT, "Should call UseTrtBackend() before call EnablePaddleToTrt()."); #ifdef ENABLE_PADDLE_BACKEND FDINFO << "While using TrtBackend with EnablePaddleToTrt, FastDeploy will change to use Paddle Inference Backend." << std::endl; backend = Backend::PDINFER; pd_enable_trt = true; #else FDASSERT(false, "While using TrtBackend with EnablePaddleToTrt, require the FastDeploy is compiled with Paddle Inference Backend, please rebuild your FastDeploy."); #endif } void RuntimeOption::SetPaddleMKLDNNCacheSize(int size) { FDASSERT(size > 0, "Parameter size must greater than 0."); pd_mkldnn_cache_size = size; } void RuntimeOption::EnableLiteFP16() { FDASSERT(false, "FP16 with LiteBackend for FastDeploy is not fully supported, " "please do not use it now!"); lite_enable_fp16 = true; } void RuntimeOption::DisableLiteFP16() { lite_enable_fp16 = false; } void RuntimeOption::SetLitePowerMode(LitePowerMode mode) { lite_power_mode = mode; } void RuntimeOption::SetLiteOptimizedModelDir( const std::string& optimized_model_dir) { lite_optimized_model_dir = optimized_model_dir; } void RuntimeOption::SetTrtInputShape(const std::string& input_name, const std::vector& min_shape, const std::vector& opt_shape, const std::vector& max_shape) { trt_min_shape[input_name].clear(); trt_max_shape[input_name].clear(); trt_opt_shape[input_name].clear(); trt_min_shape[input_name].assign(min_shape.begin(), min_shape.end()); if (opt_shape.size() == 0) { trt_opt_shape[input_name].assign(min_shape.begin(), min_shape.end()); } else { trt_opt_shape[input_name].assign(opt_shape.begin(), opt_shape.end()); } if (max_shape.size() == 0) { trt_max_shape[input_name].assign(min_shape.begin(), min_shape.end()); } else { trt_max_shape[input_name].assign(max_shape.begin(), max_shape.end()); } } void RuntimeOption::SetTrtMaxWorkspaceSize(size_t max_workspace_size) { trt_max_workspace_size = max_workspace_size; } void RuntimeOption::EnableTrtFP16() { trt_enable_fp16 = true; } void RuntimeOption::DisableTrtFP16() { trt_enable_fp16 = false; } void RuntimeOption::SetTrtCacheFile(const std::string& cache_file_path) { trt_serialize_file = cache_file_path; } bool Runtime::Compile(std::vector>& prewarm_tensors, const RuntimeOption& _option) { #ifdef ENABLE_POROS_BACKEND option = _option; auto poros_option = PorosBackendOption(); poros_option.use_gpu = (option.device == Device::GPU) ? true : false; poros_option.gpu_id = option.device_id; poros_option.long_to_int = option.long_to_int; poros_option.use_nvidia_tf32 = option.use_nvidia_tf32; poros_option.unconst_ops_thres = option.unconst_ops_thres; poros_option.poros_file = option.poros_file; poros_option.is_dynamic = option.is_dynamic; poros_option.enable_fp16 = option.trt_enable_fp16; poros_option.max_batch_size = option.trt_max_batch_size; poros_option.max_workspace_size = option.trt_max_workspace_size; FDASSERT(option.model_format == ModelFormat::TORCHSCRIPT, "PorosBackend only support model format of ModelFormat::TORCHSCRIPT."); backend_ = utils::make_unique(); auto casted_backend = dynamic_cast(backend_.get()); FDASSERT( casted_backend->Compile(option.model_file, prewarm_tensors, poros_option), "Load model from Torchscript failed while initliazing PorosBackend."); #else FDASSERT(false, "PorosBackend is not available, please compiled with " "ENABLE_POROS_BACKEND=ON."); #endif return true; } bool Runtime::Init(const RuntimeOption& _option) { option = _option; if (option.model_format == ModelFormat::AUTOREC) { option.model_format = GuessModelFormat(_option.model_file); } if (option.backend == Backend::UNKNOWN) { if (IsBackendAvailable(Backend::ORT)) { option.backend = Backend::ORT; } else if (IsBackendAvailable(Backend::PDINFER)) { option.backend = Backend::PDINFER; } else if (IsBackendAvailable(Backend::POROS)) { option.backend = Backend::POROS; } else if (IsBackendAvailable(Backend::OPENVINO)) { option.backend = Backend::OPENVINO; } else { FDERROR << "Please define backend in RuntimeOption, current it's " "Backend::UNKNOWN." << std::endl; return false; } } if (option.backend == Backend::ORT) { FDASSERT(option.device == Device::CPU || option.device == Device::GPU, "Backend::ORT only supports Device::CPU/Device::GPU."); CreateOrtBackend(); FDINFO << "Runtime initialized with Backend::ORT in " << Str(option.device) << "." << std::endl; } else if (option.backend == Backend::TRT) { FDASSERT(option.device == Device::GPU, "Backend::TRT only supports Device::GPU."); CreateTrtBackend(); FDINFO << "Runtime initialized with Backend::TRT in " << Str(option.device) << "." << std::endl; } else if (option.backend == Backend::PDINFER) { FDASSERT(option.device == Device::CPU || option.device == Device::GPU, "Backend::TRT only supports Device::CPU/Device::GPU."); FDASSERT( option.model_format == ModelFormat::PADDLE, "Backend::PDINFER only supports model format of ModelFormat::PADDLE."); CreatePaddleBackend(); FDINFO << "Runtime initialized with Backend::PDINFER in " << Str(option.device) << "." << std::endl; } else if (option.backend == Backend::POROS) { FDASSERT(option.device == Device::CPU || option.device == Device::GPU, "Backend::POROS only supports Device::CPU/Device::GPU."); FDASSERT( option.model_format == ModelFormat::TORCHSCRIPT, "Backend::POROS only supports model format of ModelFormat::TORCHSCRIPT."); FDINFO << "Runtime initialized with Backend::POROS in " << Str(option.device) << "." << std::endl; return true; } else if (option.backend == Backend::OPENVINO) { FDASSERT(option.device == Device::CPU, "Backend::OPENVINO only supports Device::CPU"); CreateOpenVINOBackend(); FDINFO << "Runtime initialized with Backend::OPENVINO in " << Str(option.device) << "." << std::endl; } else if (option.backend == Backend::LITE) { FDASSERT(option.device == Device::CPU, "Backend::LITE only supports Device::CPU"); CreateLiteBackend(); FDINFO << "Runtime initialized with Backend::LITE in " << Str(option.device) << "." << std::endl; } else { FDERROR << "Runtime only support " "Backend::ORT/Backend::TRT/Backend::PDINFER/Backend::POROS as " "backend now." << std::endl; return false; } return true; } TensorInfo Runtime::GetInputInfo(int index) { return backend_->GetInputInfo(index); } TensorInfo Runtime::GetOutputInfo(int index) { return backend_->GetOutputInfo(index); } std::vector Runtime::GetInputInfos() { return backend_->GetInputInfos(); } std::vector Runtime::GetOutputInfos() { return backend_->GetOutputInfos(); } bool Runtime::Infer(std::vector& input_tensors, std::vector* output_tensors) { return backend_->Infer(input_tensors, output_tensors); } void Runtime::CreatePaddleBackend() { #ifdef ENABLE_PADDLE_BACKEND auto pd_option = PaddleBackendOption(); pd_option.enable_mkldnn = option.pd_enable_mkldnn; pd_option.enable_log_info = option.pd_enable_log_info; pd_option.mkldnn_cache_size = option.pd_mkldnn_cache_size; pd_option.use_gpu = (option.device == Device::GPU) ? true : false; pd_option.gpu_id = option.device_id; pd_option.delete_pass_names = option.pd_delete_pass_names; pd_option.cpu_thread_num = option.cpu_thread_num; #ifdef ENABLE_TRT_BACKEND if (pd_option.use_gpu && option.pd_enable_trt) { pd_option.enable_trt = true; auto trt_option = TrtBackendOption(); trt_option.gpu_id = option.device_id; trt_option.enable_fp16 = option.trt_enable_fp16; trt_option.max_batch_size = option.trt_max_batch_size; trt_option.max_workspace_size = option.trt_max_workspace_size; trt_option.max_shape = option.trt_max_shape; trt_option.min_shape = option.trt_min_shape; trt_option.opt_shape = option.trt_opt_shape; trt_option.serialize_file = option.trt_serialize_file; pd_option.trt_option = trt_option; } #endif FDASSERT(option.model_format == ModelFormat::PADDLE, "PaddleBackend only support model format of ModelFormat::PADDLE."); backend_ = utils::make_unique(); auto casted_backend = dynamic_cast(backend_.get()); FDASSERT(casted_backend->InitFromPaddle(option.model_file, option.params_file, pd_option), "Load model from Paddle failed while initliazing PaddleBackend."); #else FDASSERT(false, "PaddleBackend is not available, please compiled with " "ENABLE_PADDLE_BACKEND=ON."); #endif } void Runtime::CreateOpenVINOBackend() { #ifdef ENABLE_OPENVINO_BACKEND auto ov_option = OpenVINOBackendOption(); ov_option.cpu_thread_num = option.cpu_thread_num; FDASSERT(option.model_format == ModelFormat::PADDLE || option.model_format == ModelFormat::ONNX, "OpenVINOBackend only support model format of ModelFormat::PADDLE / " "ModelFormat::ONNX."); backend_ = utils::make_unique(); auto casted_backend = dynamic_cast(backend_.get()); if (option.model_format == ModelFormat::ONNX) { FDASSERT(casted_backend->InitFromOnnx(option.model_file, ov_option), "Load model from ONNX failed while initliazing OrtBackend."); } else { FDASSERT(casted_backend->InitFromPaddle(option.model_file, option.params_file, ov_option), "Load model from Paddle failed while initliazing OrtBackend."); } #else FDASSERT(false, "OpenVINOBackend is not available, please compiled with " "ENABLE_OPENVINO_BACKEND=ON."); #endif } void Runtime::CreateOrtBackend() { #ifdef ENABLE_ORT_BACKEND auto ort_option = OrtBackendOption(); ort_option.graph_optimization_level = option.ort_graph_opt_level; ort_option.intra_op_num_threads = option.cpu_thread_num; ort_option.inter_op_num_threads = option.ort_inter_op_num_threads; ort_option.execution_mode = option.ort_execution_mode; ort_option.use_gpu = (option.device == Device::GPU) ? true : false; ort_option.gpu_id = option.device_id; // TODO(jiangjiajun): inside usage, maybe remove this later ort_option.remove_multiclass_nms_ = option.remove_multiclass_nms_; ort_option.custom_op_info_ = option.custom_op_info_; FDASSERT(option.model_format == ModelFormat::PADDLE || option.model_format == ModelFormat::ONNX, "OrtBackend only support model format of ModelFormat::PADDLE / " "ModelFormat::ONNX."); backend_ = utils::make_unique(); auto casted_backend = dynamic_cast(backend_.get()); if (option.model_format == ModelFormat::ONNX) { FDASSERT(casted_backend->InitFromOnnx(option.model_file, ort_option), "Load model from ONNX failed while initliazing OrtBackend."); } else { FDASSERT(casted_backend->InitFromPaddle(option.model_file, option.params_file, ort_option), "Load model from Paddle failed while initliazing OrtBackend."); } #else FDASSERT(false, "OrtBackend is not available, please compiled with " "ENABLE_ORT_BACKEND=ON."); #endif } void Runtime::CreateTrtBackend() { #ifdef ENABLE_TRT_BACKEND auto trt_option = TrtBackendOption(); trt_option.gpu_id = option.device_id; trt_option.enable_fp16 = option.trt_enable_fp16; trt_option.enable_int8 = option.trt_enable_int8; trt_option.max_batch_size = option.trt_max_batch_size; trt_option.max_workspace_size = option.trt_max_workspace_size; trt_option.max_shape = option.trt_max_shape; trt_option.min_shape = option.trt_min_shape; trt_option.opt_shape = option.trt_opt_shape; trt_option.serialize_file = option.trt_serialize_file; // TODO(jiangjiajun): inside usage, maybe remove this later trt_option.remove_multiclass_nms_ = option.remove_multiclass_nms_; trt_option.custom_op_info_ = option.custom_op_info_; FDASSERT(option.model_format == ModelFormat::PADDLE || option.model_format == ModelFormat::ONNX, "TrtBackend only support model format of ModelFormat::PADDLE / " "ModelFormat::ONNX."); backend_ = utils::make_unique(); auto casted_backend = dynamic_cast(backend_.get()); if (option.model_format == ModelFormat::ONNX) { FDASSERT(casted_backend->InitFromOnnx(option.model_file, trt_option), "Load model from ONNX failed while initliazing TrtBackend."); } else { FDASSERT(casted_backend->InitFromPaddle(option.model_file, option.params_file, trt_option), "Load model from Paddle failed while initliazing TrtBackend."); } #else FDASSERT(false, "TrtBackend is not available, please compiled with " "ENABLE_TRT_BACKEND=ON."); #endif } void Runtime::CreateLiteBackend() { #ifdef ENABLE_LITE_BACKEND auto lite_option = LiteBackendOption(); lite_option.threads = option.cpu_thread_num; lite_option.enable_fp16 = option.lite_enable_fp16; lite_option.power_mode = static_cast(option.lite_power_mode); lite_option.optimized_model_dir = option.lite_optimized_model_dir; FDASSERT(option.model_format == ModelFormat::PADDLE, "LiteBackend only support model format of ModelFormat::PADDLE"); backend_ = utils::make_unique(); auto casted_backend = dynamic_cast(backend_.get()); FDASSERT(casted_backend->InitFromPaddle(option.model_file, option.params_file, lite_option), "Load model from nb file failed while initializing LiteBackend."); #else FDASSERT(false, "LiteBackend is not available, please compiled with " "ENABLE_LITE_BACKEND=ON."); #endif } } // namespace fastdeploy