import fastdeploy as fd import cv2 import os def parse_arguments(): import argparse import ast parser = argparse.ArgumentParser() parser.add_argument( "--model", required=True, help="Path of PaddleClas model.") parser.add_argument( "--image", type=str, required=True, help="Path of test image file.") parser.add_argument( "--topk", type=int, default=1, help="Return topk results.") parser.add_argument( "--device", type=str, default='cpu', help="Type of inference device, support 'cpu' or 'gpu' or 'ipu'.") parser.add_argument( "--use_trt", type=ast.literal_eval, default=False, help="Wether to use tensorrt.") return parser.parse_args() def build_option(args): option = fd.RuntimeOption() if args.device.lower() == "gpu": option.use_gpu() if args.device.lower() == "ipu": option.use_ipu() if args.use_trt: option.use_trt_backend() return option args = parse_arguments() # 配置runtime,加载模型 runtime_option = build_option(args) model_file = os.path.join(args.model, "inference.pdmodel") params_file = os.path.join(args.model, "inference.pdiparams") config_file = os.path.join(args.model, "inference_cls.yaml") model = fd.vision.classification.PaddleClasModel( model_file, params_file, config_file, runtime_option=runtime_option) # 预测图片分类结果 im = cv2.imread(args.image) result = model.predict(im.copy(), args.topk) print(result)