// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. using System; using System.IO; using System.Runtime.InteropServices; using System.Collections.Generic; using fastdeploy.types_internal_c; namespace fastdeploy { namespace vision { public enum ResultType { UNKNOWN_RESULT, CLASSIFY, DETECTION, SEGMENTATION, OCR, MOT, FACE_DETECTION, FACE_ALIGNMENT, FACE_RECOGNITION, MATTING, MASK, KEYPOINT_DETECTION, HEADPOSE } public class Mask { public List data; public List shape; public ResultType type; public Mask() { this.data = new List(); this.shape = new List(); this.type = ResultType.MASK; } public override string ToString() { string information = "Mask(" ; int ndim = this.shape.Count; for (int i = 0; i < ndim; i++) { if (i < ndim - 1) { information += this.shape[i].ToString() + ","; } else { information += this.shape[i].ToString(); } } information += ")\n"; return information; } } public class ClassifyResult { public List label_ids; public List scores; public ResultType type; public ClassifyResult() { this.label_ids = new List(); this.scores = new List(); this.type = ResultType.CLASSIFY; } public string ToString() { string information; information = "ClassifyResult(\nlabel_ids: "; for (int i = 0; i < label_ids.Count; i++) { information = information + label_ids[i].ToString() + ", "; } information += "\nscores: "; for (int i = 0; i < scores.Count; i++) { information = information + scores[i].ToString() + ", "; } information += "\n)"; return information; } } public class DetectionResult { public List boxes; public List scores; public List label_ids; public List masks; public bool contain_masks; public ResultType type; public DetectionResult() { this.boxes = new List(); this.scores = new List(); this.label_ids = new List(); this.masks = new List(); this.contain_masks = false; this.type = ResultType.DETECTION; } public string ToString() { string information; if (!contain_masks) { information = "DetectionResult: [xmin, ymin, xmax, ymax, score, label_id]\n"; } else { information = "DetectionResult: [xmin, ymin, xmax, ymax, score, label_id, mask_shape]\n"; } for (int i = 0; i < boxes.Count; i++) { information = information + boxes[i][0].ToString() + "," + boxes[i][1].ToString() + ", " + boxes[i][2].ToString() + ", " + boxes[i][3].ToString() + ", " + scores[i].ToString() + ", " + label_ids[i].ToString(); if (!contain_masks) { information += "\n"; } else { information += ", " + masks[i].ToString(); } } return information; } } public class ConvertResult { public static FD_ClassifyResult ConvertClassifyResultToCResult(ClassifyResult classify_result) { FD_ClassifyResult fd_classify_result = new FD_ClassifyResult(); // copy label_ids // Create a managed array fd_classify_result.label_ids.size = (uint)classify_result.label_ids.Count; int[] label_ids = new int[fd_classify_result.label_ids.size]; // Copy data from Link to Array classify_result.label_ids.CopyTo(label_ids); // Copy data to unmanaged memory int size = Marshal.SizeOf(label_ids[0]) * label_ids.Length; fd_classify_result.label_ids.data = Marshal.AllocHGlobal(size); Marshal.Copy(label_ids, 0, fd_classify_result.label_ids.data, label_ids.Length); // copy scores // Create a managed array fd_classify_result.scores.size = (uint)classify_result.scores.Count; float[] scores = new float[fd_classify_result.scores.size]; // Copy data from Link to Array classify_result.scores.CopyTo(scores); // Copy data to unmanaged memory size = Marshal.SizeOf(scores[0]) * scores.Length; fd_classify_result.scores.data = Marshal.AllocHGlobal(size); Marshal.Copy(scores, 0, fd_classify_result.scores.data, scores.Length); fd_classify_result.type = (FD_ResultType)classify_result.type; return fd_classify_result; } public static ClassifyResult ConvertCResultToClassifyResult(FD_ClassifyResult fd_classify_result) { ClassifyResult classify_result = new ClassifyResult(); // copy label_ids int[] label_ids = new int[fd_classify_result.label_ids.size]; Marshal.Copy(fd_classify_result.label_ids.data, label_ids, 0, label_ids.Length); classify_result.label_ids = new List(label_ids); // copy scores float[] scores = new float[fd_classify_result.scores.size]; Marshal.Copy(fd_classify_result.scores.data, scores, 0, scores.Length); classify_result.scores = new List(scores); classify_result.type = (ResultType)fd_classify_result.type; return classify_result; } public static FD_DetectionResult ConvertDetectionResultToCResult(DetectionResult detection_result) { FD_DetectionResult fd_detection_result = new FD_DetectionResult(); // copy boxes int boxes_coordinate_dim = 4; int size; fd_detection_result.boxes.size = (uint)detection_result.boxes.Count; FD_OneDimArraySize[] boxes = new FD_OneDimArraySize[fd_detection_result.boxes.size]; // Copy each box for (int i = 0; i < (int)fd_detection_result.boxes.size; i++) { boxes[i].size = (uint)detection_result.boxes[i].Length; float[] boxes_i = new float[boxes_coordinate_dim]; detection_result.boxes[i].CopyTo(boxes_i, 0); size = Marshal.SizeOf(boxes_i[0]) * boxes_i.Length; boxes[i].data = Marshal.AllocHGlobal(size); Marshal.Copy(boxes_i, 0, boxes[i].data, boxes_i.Length); } // Copy data to unmanaged memory size = Marshal.SizeOf(boxes[0]) * boxes.Length; fd_detection_result.boxes.data = Marshal.AllocHGlobal(size); for (int i = 0; i < boxes.Length; i++) { Marshal.StructureToPtr( boxes[i], fd_detection_result.boxes.data + i * Marshal.SizeOf(boxes[0]), true); } // copy scores fd_detection_result.scores.size = (uint)detection_result.scores.Count; float[] scores = new float[fd_detection_result.scores.size]; // Copy data from Link to Array detection_result.scores.CopyTo(scores); // Copy data to unmanaged memory size = Marshal.SizeOf(scores[0]) * scores.Length; fd_detection_result.scores.data = Marshal.AllocHGlobal(size); Marshal.Copy(scores, 0, fd_detection_result.scores.data, scores.Length); // copy label_ids fd_detection_result.label_ids.size = (uint)detection_result.label_ids.Count; int[] label_ids = new int[fd_detection_result.label_ids.size]; // Copy data from Link to Array detection_result.label_ids.CopyTo(label_ids); // Copy data to unmanaged memory size = Marshal.SizeOf(label_ids[0]) * label_ids.Length; fd_detection_result.label_ids.data = Marshal.AllocHGlobal(size); Marshal.Copy(label_ids, 0, fd_detection_result.label_ids.data, label_ids.Length); // copy masks fd_detection_result.masks.size = detection_result.masks.Count; FD_Mask[] masks = new FD_Mask[fd_detection_result.masks.size]; // copy each mask for (int i = 0; i < (int)fd_detection_result.masks.size; i++) { // copy data in mask masks[i].data.size = (uint)detection_result.masks[i].data.Count; byte[] masks_data_i = new byte[masks[i].data.size]; detection_result.masks[i].data.CopyTo(masks_data_i); size = Marshal.SizeOf(masks_data_i[0]) * masks_data_i.Length; masks[i].data.data = Marshal.AllocHGlobal(size); Marshal.Copy(masks_data_i, 0, masks[i].data.data, masks_data_i.Length); // copy shape in mask masks[i].shape.size = (uint)detection_result.masks[i].shape.Count; long[] masks_shape_i = new long[masks[i].shape.size]; detection_result.masks[i].shape.CopyTo(masks_shape_i); size = Marshal.SizeOf(masks_shape_i[0]) * masks_shape_i.Length; masks[i].shape.data = Marshal.AllocHGlobal(size); Marshal.Copy(masks_shape_i, 0, masks[i].shape.data, masks_shape_i.Length); // copy type masks[i].type = (FD_ResultType)detection_result.masks[i].type; } if (fd_detection_result.masks.size != 0) { size = Marshal.SizeOf(masks[0]) * masks.Length; fd_detection_result.masks.data = Marshal.AllocHGlobal(size); for (int i = 0; i < masks.Length; i++) { Marshal.StructureToPtr(masks[i], fd_detection_result.masks.data + i * Marshal.SizeOf(masks[0]), true); } } fd_detection_result.contain_masks = detection_result.contain_masks; fd_detection_result.type = (FD_ResultType)detection_result.type; return fd_detection_result; } public static DetectionResult ConvertCResultToDetectionResult(FD_DetectionResult fd_detection_result) { DetectionResult detection_result = new DetectionResult(); // copy boxes detection_result.boxes = new List(); FD_OneDimArraySize[] boxes = new FD_OneDimArraySize[fd_detection_result.boxes.size]; Console.WriteLine(fd_detection_result.boxes.size); for (int i = 0; i < (int)fd_detection_result.boxes.size; i++) { boxes[i] = (FD_OneDimArraySize)Marshal.PtrToStructure( fd_detection_result.boxes.data + i * Marshal.SizeOf(boxes[0]), typeof(FD_OneDimArraySize)); float[] box_i = new float[boxes[i].size]; Marshal.Copy(boxes[i].data, box_i, 0, box_i.Length); detection_result.boxes.Add(box_i); } // copy scores float[] scores = new float[fd_detection_result.scores.size]; Marshal.Copy(fd_detection_result.scores.data, scores, 0, scores.Length); detection_result.scores = new List(scores); // copy label_ids int[] label_ids = new int[fd_detection_result.label_ids.size]; Marshal.Copy(fd_detection_result.label_ids.data, label_ids, 0, label_ids.Length); detection_result.label_ids = new List(label_ids); // copy masks detection_result.masks = new List(); FD_Mask[] fd_masks = new FD_Mask[fd_detection_result.masks.size]; for (int i = 0; i < (int)fd_detection_result.masks.size; i++) { fd_masks[i] = (FD_Mask)Marshal.PtrToStructure( fd_detection_result.masks.data + i * Marshal.SizeOf(fd_masks[0]), typeof(FD_Mask)); Mask mask_i = new Mask(); byte[] mask_i_data = new byte[fd_masks[i].data.size]; Marshal.Copy(fd_masks[i].data.data, mask_i_data, 0, mask_i_data.Length); long[] mask_i_shape = new long[fd_masks[i].shape.size]; Marshal.Copy(fd_masks[i].shape.data, mask_i_shape, 0, mask_i_shape.Length); mask_i.type = (ResultType)fd_masks[i].type; detection_result.masks.Add(mask_i); } detection_result.contain_masks = fd_detection_result.contain_masks; detection_result.type = (ResultType)fd_detection_result.type; return detection_result; } public static FD_OneDimArrayCstr ConvertStringArrayToCOneDimArrayCstr(string[] strs){ FD_OneDimArrayCstr fd_one_dim_cstr = new FD_OneDimArrayCstr(); fd_one_dim_cstr.size = (nuint)strs.Length; // Copy data to unmanaged memory FD_Cstr[] c_strs = new FD_Cstr[strs.Length]; int size = Marshal.SizeOf(c_strs[0]) * c_strs.Length; fd_one_dim_cstr.data = Marshal.AllocHGlobal(size); for (int i = 0; i < strs.Length; i++) { c_strs[i].size = (nuint)strs[i].Length; c_strs[i].data = strs[i]; Marshal.StructureToPtr( c_strs[i], fd_one_dim_cstr.data + i * Marshal.SizeOf(c_strs[0]), true); } return fd_one_dim_cstr; } public static string[] ConvertCOneDimArrayCstrToStringArray(FD_OneDimArrayCstr c_strs){ string[] strs = new string[c_strs.size]; for(int i=0; i<(int)c_strs.size; i++){ FD_Cstr cstr = (FD_Cstr)Marshal.PtrToStructure( c_strs.data + i * Marshal.SizeOf(new FD_Cstr()), typeof(FD_Cstr)); strs[i] = cstr.data; } return strs; } } } }