""" # Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ from __future__ import annotations from functools import partial from typing import Dict, Union import numpy as np import paddle from paddle import nn from paddleformers.transformers import PretrainedModel from paddleformers.utils.log import logger from fastdeploy.config import FDConfig, ModelConfig from fastdeploy.model_executor.layers.mtp_linear import ParallelEHProjection from fastdeploy.model_executor.layers.normalization import RMSNorm from fastdeploy.model_executor.models.ernie4_5_moe import Ernie4_5_DecoderLayer from fastdeploy.model_executor.models.model_base import ModelForCasualLM from fastdeploy.worker.forward_meta import ForwardMeta class Ernie4_5_MTPPretrainedModel(PretrainedModel): """ Ernie4_5_MTPPretrainedModel """ config_class = FDConfig def _init_weight(self, layer): """ _init_weight """ return None @classmethod def _get_tensor_parallel_mappings(cls, config: ModelConfig, is_split=True): """ get_tensor_parallel_mappings """ logger.info("erine inference model _get_tensor_parallel_mappings") from paddleformers.transformers.conversion_utils import \ split_or_merge_func fn = split_or_merge_func( is_split=is_split, tensor_parallel_degree=config.tensor_parallel_degree, tensor_parallel_rank=config.tensor_parallel_rank, num_attention_heads=config.num_attention_heads, ) def gqa_qkv_split_func( weight, tensor_parallel_degree, tensor_parallel_rank, num_attention_heads, num_key_value_heads, head_dim, ): def get_shape(tensor): return (tensor.get_shape() if hasattr(tensor, "get_shape") else tensor.shape) def slice_tensor(tensor, start, end): shape = get_shape(tensor) if len(shape) == 1: return tensor[start:end] else: return tensor[..., start:end] q_end = num_attention_heads * head_dim k_end = q_end + num_key_value_heads * head_dim v_end = k_end + num_key_value_heads * head_dim q = slice_tensor(weight, 0, q_end) k = slice_tensor(weight, q_end, k_end) v = slice_tensor(weight, k_end, v_end) def split_tensor(tensor, degree): shape = get_shape(tensor) size = shape[-1] block_size = size // degree if hasattr(tensor, "get_shape"): return [ slice_tensor(tensor, i * block_size, (i + 1) * block_size) for i in range(degree) ] else: return np.split(tensor, degree, axis=-1) q_list = split_tensor(q, tensor_parallel_degree) k_list = split_tensor(k, tensor_parallel_degree) v_list = split_tensor(v, tensor_parallel_degree) if tensor_parallel_rank is None: return [ np.concatenate([q_i, k_i, v_i], axis=-1) for q_i, k_i, v_i in zip(q_list, k_list, v_list) ] else: return np.concatenate( [ q_list[tensor_parallel_rank], k_list[tensor_parallel_rank], v_list[tensor_parallel_rank], ], axis=-1, ) def gqa_qkv_merge_func(weight_list, num_attention_heads, num_key_value_heads, head_dim): tensor_parallel_degree = len(weight_list) num_attention_heads = num_attention_heads // tensor_parallel_degree num_key_value_heads = num_key_value_heads // tensor_parallel_degree is_paddle_tensor = not isinstance(weight_list[0], np.ndarray) def get_shape(tensor): return (tensor.get_shape() if hasattr(tensor, "get_shape") else tensor.shape) def slice_tensor(tensor, start, end): if len(get_shape(tensor)) == 1: return tensor[start:end] else: return tensor[..., start:end] q_list, k_list, v_list = [], [], [] for weight in weight_list: q_end = num_attention_heads * head_dim k_end = q_end + num_key_value_heads * head_dim v_end = k_end + num_key_value_heads * head_dim q = slice_tensor(weight, 0, q_end) k = slice_tensor(weight, q_end, k_end) v = slice_tensor(weight, k_end, v_end) q_list.append(q) k_list.append(k) v_list.append(v) merged = q_list + k_list + v_list if is_paddle_tensor: tensor = paddle.concat(merged, axis=-1) if tensor.place.is_gpu_place(): tensor = tensor._copy_to(paddle.CUDAPinnedPlace(), False) return tensor else: return np.concatenate(merged, axis=-1) if (config.num_key_value_heads is not None and config.num_key_value_heads != config.num_attention_heads): if is_split: qkv_fn = partial( gqa_qkv_split_func, tensor_parallel_degree=config.tensor_parallel_degree, tensor_parallel_rank=config.tensor_parallel_rank, num_attention_heads=config.num_attention_heads, num_key_value_heads=config.num_key_value_heads, head_dim=config.hidden_size // config.num_attention_heads, ) else: qkv_fn = partial( gqa_qkv_merge_func, num_attention_heads=config.num_attention_heads, num_key_value_heads=config.num_key_value_heads, head_dim=config.hidden_size // config.num_attention_heads, ) else: qkv_fn = partial(fn, is_column=True) def get_tensor_parallel_split_mappings(num_layers, moe_num_experts, moe_layer_start_index): """ get tensor from parallel-split-mappings """ final_actions = {} base_model_prefix = "ernie.mtp_block" base_actions = {} base_actions["ernie.mtp_linear_proj.0.weight"] = partial( fn, is_column=True) base_actions[ f"{base_model_prefix}.0.self_attn.qkv_proj.weight"] = qkv_fn base_actions[ f"{base_model_prefix}.0.self_attn.o_proj.weight"] = partial( fn, is_column=False) base_actions[ f"{base_model_prefix}.0.mlp.up_gate_proj.weight"] = partial( fn, is_column=True, is_naive_2fuse=True) base_actions[f"{base_model_prefix}.0.mlp.down_proj.weight"] = ( partial(fn, is_column=False)) for expert_idx in range(moe_num_experts): base_actions[ f"{base_model_prefix}.{moe_layer_start_index}" f".mlp.experts.{expert_idx}.up_gate_proj.weight"] = partial( fn, is_column=True, is_naive_2fuse=True) base_actions[ f"{base_model_prefix}.{moe_layer_start_index}" f".mlp.experts.{expert_idx}.down_proj.weight"] = partial( fn, is_column=False) for key, action in base_actions.items(): if (f"{base_model_prefix}.0.mlp.up_gate_proj.weight" in key or f"{base_model_prefix}.0.mlp.down_proj.weight" in key): for i in range(moe_layer_start_index): final_actions[key.replace("0.", f"{i}.")] = action elif f"{moe_layer_start_index}.mlp.experts." in key: for i in range(moe_layer_start_index, num_layers): final_actions[key.replace(f"{moe_layer_start_index}.", f"{i}.")] = action elif f"{base_model_prefix}.0." in key: for i in range(num_layers): final_actions[key.replace("0.", f"{i}.")] = action final_actions[key] = action return final_actions moe_num_experts = 0 mappings = get_tensor_parallel_split_mappings( config.num_layers, moe_num_experts, config.moe_layer_start_index, ) return mappings class Ernie4_5_MTPModel(nn.Layer): """ Ernie4_5_MTPModel """ def __init__( self, fd_config: FDConfig = None, ): """ Initializer for the Ernie4_5_MTPModel class. Args: """ super().__init__() self.num_layers = fd_config.model_config.num_layers self.embeddings = fd_config.speculative_config.sharing_model.model.embeddings self.hidden_layers = nn.LayerList([ Ernie4_5_DecoderLayer( fd_config=fd_config, prefix=f"{fd_config.model_config.prefix_name}.{i}") for i in range(self.num_layers) ]) self.enorm = RMSNorm( fd_config, hidden_size=fd_config.model_config.hidden_size, eps=1e-5, prefix="ernie.mtp_emb_norm.0", ) self.hnorm = RMSNorm( fd_config, hidden_size=fd_config.model_config.hidden_size, eps=1e-5, prefix="ernie.mtp_hidden_norm.0", ) self.eh_proj = ParallelEHProjection( fd_config=fd_config, num_embeddings=fd_config.model_config.hidden_size, embedding_dim=fd_config.model_config.hidden_size * 2, prefix="ernie.mtp_linear_proj.0", ) def load_state_dict(self, state_dict): """ Load model parameters from a given state dictionary. Args: state_dict (dict[str, np.ndarray | paddle.Tensor]): A dictionary containing model parameters, where keys are parameter names and values are NumPy arrays or PaddlePaddle tensors. """ # self.embeddings.load_state_dict(state_dict) self.enorm.load_state_dict(state_dict) self.hnorm.load_state_dict(state_dict) self.eh_proj.load_state_dict(state_dict) for i in range(self.num_layers): logger.info(f"Start load layer {i}") self.hidden_layers[i].load_state_dict(state_dict) def forward( self, ids_remove_padding: paddle.Tensor, previous_hidden_states: paddle.Tensor, forward_meta: ForwardMeta, ): """ forward """ inputs_embedding = self.embeddings( ids_remove_padding=ids_remove_padding) inputs_embedding = paddle.concat( [self.enorm(inputs_embedding), self.hnorm(previous_hidden_states)], axis=-1) hidden_states = self.eh_proj(inputs_embedding) residual = None for i in range(self.num_layers): hidden_states, residual = self.hidden_layers[i](forward_meta, hidden_states, residual) hidden_states = hidden_states + residual return hidden_states class Ernie4_5_MTPForCausalLM(ModelForCasualLM): """ Ernie4_5_MTPForCausalLM """ def __init__(self, fd_config: FDConfig): """ Args: fd_config (FDConfig): Configurations for the LLM model. """ super(Ernie4_5_MTPForCausalLM, self).__init__(fd_config) self.fd_config = fd_config self.model = Ernie4_5_MTPModel(fd_config=fd_config) self.ori_vocab_size = fd_config.model_config.ori_vocab_size self.lm_head = fd_config.speculative_config.sharing_model.lm_head self.tie_word_embeddings = fd_config.model_config.tie_word_embeddings @classmethod def name(self): """ """ return "Ernie4_5_MTPForCausalLM" @paddle.no_grad() def set_state_dict(self, state_dict: Dict[str, Union[np.ndarray, paddle.Tensor]]): """ Load model parameters from a given state dictionary. Args: state_dict (dict[str, np.ndarray | paddle.Tensor]): A dictionary containing model parameters, where keys are parameter names and values are NumPy arrays or PaddlePaddle tensors. """ self.model.load_state_dict(state_dict) # if self.tie_word_embeddings: # self.lm_head.out_linear.weight.set_value( # self.model.embeddings.word_embeddings.weight.transpose([1, 0])) # else: # self.lm_head.load_state_dict(state_dict) def compute_logits(self, hidden_states: paddle.Tensor): """ compute logits """ logits = self.lm_head(hidden_states) logits = paddle.cast(logits, paddle.float32) logits[:, self.ori_vocab_size:] = -float("inf") return logits def empty_input_forward(self): """ empty_input_forward """ fake_hidden_states = paddle.empty( shape=[0, self.fd_config.model_config.hidden_size], dtype=paddle.get_default_dtype(), ) for i in range(self.fd_config.moe_config.moe_layer_start_index, self.fd_config.model_config.num_layers): self.model.hidden_layers[i].mlp.fused_moe(fake_hidden_states) def forward( self, ids_remove_padding: paddle.Tensor, previous_hidden_states: paddle.Tensor, forward_meta: ForwardMeta, ): """ forward """ hidden_states = self.model(ids_remove_padding, previous_hidden_states, forward_meta) return hidden_states