[English](README.md) | 简体中文 # PaddleDetection Python部署示例 本目录下提供`infer_ppyoloe_demo.cc`快速完成PPDetection模型使用TVM加速部署的示例。 ## 运行 ```bash # copy model to example folder cp -r /path/to/model ./ wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg python infer_ppyoloe.py --model_dir tvm_save --image 000000014439.jpg --device cpu ``` 运行完成可视化结果如下图所示
## PaddleDetection Python接口 ```python fastdeploy.vision.detection.PPYOLOE(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE) fastdeploy.vision.detection.PicoDet(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE) fastdeploy.vision.detection.PaddleYOLOX(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE) fastdeploy.vision.detection.YOLOv3(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE) fastdeploy.vision.detection.PPYOLO(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE) fastdeploy.vision.detection.FasterRCNN(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE) fastdeploy.vision.detection.MaskRCNN(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE) fastdeploy.vision.detection.SSD(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE) fastdeploy.vision.detection.PaddleYOLOv5(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE) fastdeploy.vision.detection.PaddleYOLOv6(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE) fastdeploy.vision.detection.PaddleYOLOv7(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE) fastdeploy.vision.detection.RTMDet(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE) fastdeploy.vision.detection.CascadeRCNN(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE) fastdeploy.vision.detection.PSSDet(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE) fastdeploy.vision.detection.RetinaNet(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE) fastdeploy.vision.detection.PPYOLOESOD(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE) fastdeploy.vision.detection.FCOS(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE) fastdeploy.vision.detection.TTFNet(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE) fastdeploy.vision.detection.TOOD(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE) fastdeploy.vision.detection.GFL(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE) ``` PaddleDetection模型加载和初始化,其中model_file, params_file为导出的Paddle部署模型格式, config_file为PaddleDetection同时导出的部署配置yaml文件 **参数** > * **model_file**(str): 模型文件路径 > * **params_file**(str): 参数文件路径 > * **config_file**(str): 推理配置yaml文件路径 > * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置 > * **model_format**(ModelFormat): 模型格式,默认为Paddle ### predict函数 PaddleDetection中各个模型,包括PPYOLOE/PicoDet/PaddleYOLOX/YOLOv3/PPYOLO/FasterRCNN,均提供如下同样的成员函数用于进行图像的检测 > ```python > PPYOLOE.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5) > ``` > > 模型预测结口,输入图像直接输出检测结果。 > > **参数** > > > * **image_data**(np.ndarray): 输入数据,注意需为HWC,BGR格式 > **返回** > > > 返回`fastdeploy.vision.DetectionResult`结构体,结构体说明参考文档[视觉模型预测结果](../../../../../docs/api/vision_results/) ## 其它文档 - [PaddleDetection 模型介绍](../..) - [PaddleDetection C++部署](../cpp) - [模型预测结果说明](../../../../../../docs/api/vision_results/) - [如何切换模型推理后端引擎](../../../../../../docs/cn/faq/how_to_change_backend.md)