""" # Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ import copy from typing import Optional import paddle from fastdeploy.model_executor.layers.linear import ( MergedColumnParallelLinear, QKVParallelLinear, ) from fastdeploy.model_executor.layers.moe import FusedMoE from fastdeploy.model_executor.layers.quantization.ops import ( cutlass_scaled_mm, scaled_fp8_quant, ) from fastdeploy.model_executor.layers.quantization.quant_base import ( QuantConfigBase, QuantMethodBase, ) from fastdeploy.model_executor.layers.utils import per_token_cast_to_fp8 from fastdeploy.model_executor.utils import TensorTracker, set_weight_attrs class WFP8AFP8Config(QuantConfigBase): """ Quantization config for weight and activation with FP8. """ def __init__( self, activation_scheme: str = "dynamic", weight_block_size: list[int] = [-1, 1], is_checkpoint_bf16: bool = False, ) -> None: super().__init__() self.quant_max_bound = 448 self.quant_min_bound = -448 self.quant_round_type = 1 self.activation_scheme = activation_scheme self.weight_block_size = weight_block_size self.is_checkpoint_bf16 = is_checkpoint_bf16 def name(self) -> str: """ """ return "wfp8afp8" @classmethod def from_config(cls, config: dict) -> "WFP8AFP8Config": """ """ is_checkpoint_bf16 = config.get("is_checkpoint_bf16", False) return cls(is_checkpoint_bf16=is_checkpoint_bf16) def get_quant_method(self, layer) -> Optional[QuantMethodBase]: """ """ if isinstance(layer, FusedMoE): from fastdeploy.model_executor.layers.moe.fused_moe_triton_backend import ( Wfp8Afp8MoEMethod, ) return Wfp8Afp8MoEMethod(self) else: return WFP8AFP8LinearMethod(self) class WFP8AFP8LinearMethod(QuantMethodBase): """ Weight and activation quantization method for linear layer with FP8 """ def __init__( self, quant_config: WFP8AFP8Config, ) -> None: super().__init__() self.quant_config = quant_config self.use_per_token_if_dynamic = True def create_weights(self, layer, **extra_weight_attrs): """ """ weight_shape = layer.weight_shape weight_block_size = self.quant_config.weight_block_size assert len(weight_shape) == 2 and len(weight_block_size) == 2 scale_shape = copy.deepcopy(weight_shape) for i in range(len(weight_shape)): scale_shape[i] = ( (weight_shape[i] + weight_block_size[i] - 1) // weight_block_size[i] if weight_block_size[i] > 0 else 1 ) scale_shape = scale_shape[::-1] if self.quant_config.is_checkpoint_bf16: self.use_per_token_if_dynamic = True layer.weight = layer.create_parameter( shape=weight_shape, dtype=layer.weight_dtype, is_bias=False, default_initializer=paddle.nn.initializer.Constant(0), ) quant_attrs = extra_weight_attrs if isinstance(layer, MergedColumnParallelLinear) or isinstance(layer, QKVParallelLinear): quant_attrs = { **extra_weight_attrs, "tensor_track": TensorTracker( shape=layer.weight_shape, output_dim=extra_weight_attrs.get("output_dim") ), } set_weight_attrs( layer.weight, quant_attrs, ) else: layer.weight_shape.reverse() layer.weight_dtype = "float8_e4m3fn" # TODO(YuanRisheng): set weight logic should be moved to process_loaded_weights func self.skip_quant = False layer.weight = layer.create_parameter( shape=layer.weight_shape, dtype=layer.weight_dtype, is_bias=False, default_initializer=paddle.nn.initializer.Constant(0), ) layer.weight_scale = layer.create_parameter( shape=scale_shape, dtype="float32", is_bias=False, default_initializer=paddle.nn.initializer.Constant(0), ) def process_weights_after_loading(self, layer) -> None: if not self.quant_config.is_checkpoint_bf16: return weight_tensor = layer.weight.transpose([1, 0]).contiguous() assert self.quant_config.weight_block_size == [-1, 1] qweight, weight_scale = per_token_cast_to_fp8(weight_tensor) if hasattr(layer.weight, "tensor_track"): layer.weight.tensor_track = None layer.weight.value().get_tensor()._clear() del layer.weight layer.weight = layer.create_parameter( shape=qweight.shape, dtype="float8_e4m3fn", is_bias=False, default_initializer=paddle.nn.initializer.Constant(0), ) layer.weight_scale = layer.create_parameter( shape=weight_scale.shape, dtype="float32", is_bias=False, default_initializer=paddle.nn.initializer.Constant(0), ) layer.weight.copy_(qweight, False) layer.weight_scale.copy_(weight_scale, False) def process_loaded_weights(self, layer, weights) -> None: """ """ if self.skip_quant: weight_tensor = weights.cast(layer._dtype) layer.weight.set_value(weight_tensor) return if weights.dtype != paddle.float8_e4m3fn: self.use_per_token_if_dynamic = True weight_tensor = weights.transpose([1, 0]).contiguous() qweight, weight_scale = per_token_cast_to_fp8(weight_tensor) layer.weight.copy_(qweight, False) layer.weight_scale.set_value(weight_scale) def apply(self, layer, x): """ """ if self.use_per_token_if_dynamic: out_type = x.dtype a_q, a_scales = scaled_fp8_quant(x, use_per_token_if_dynamic=self.use_per_token_if_dynamic) linear_out = cutlass_scaled_mm( a_q, layer.weight, a_scales, layer.weight_scale, out_type, layer.bias, ) else: raise NotImplementedError return linear_out