// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "fastdeploy/vision/common/result.h" #include "opencv2/imgproc/imgproc.hpp" #include "fastdeploy/vision/tracking/pptracking/model.h" namespace fastdeploy { /** \brief All C++ FastDeploy Vision Models APIs are defined inside this namespace * */ namespace vision { class FASTDEPLOY_DECL Visualize { public: static int num_classes_; static std::vector color_map_; static const std::vector& GetColorMap(int num_classes = 1000); static cv::Mat VisDetection(const cv::Mat& im, const DetectionResult& result, float score_threshold = 0.0, int line_size = 1, float font_size = 0.5f); static cv::Mat VisFaceDetection(const cv::Mat& im, const FaceDetectionResult& result, int line_size = 1, float font_size = 0.5f); static cv::Mat VisSegmentation(const cv::Mat& im, const SegmentationResult& result); static cv::Mat VisMattingAlpha(const cv::Mat& im, const MattingResult& result, bool remove_small_connected_area = false); static cv::Mat RemoveSmallConnectedArea(const cv::Mat& alpha_pred, float threshold); static cv::Mat SwapBackgroundMatting( const cv::Mat& im, const cv::Mat& background, const MattingResult& result, bool remove_small_connected_area = false); static cv::Mat SwapBackgroundSegmentation(const cv::Mat& im, const cv::Mat& background, int background_label, const SegmentationResult& result); static cv::Mat VisOcr(const cv::Mat& srcimg, const OCRResult& ocr_result); }; std::vector GenerateColorMap(int num_classes = 1000); cv::Mat RemoveSmallConnectedArea(const cv::Mat& alpha_pred, float threshold); /** \brief Show the visualized results for detection models * * \param[in] im the input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format * \param[in] result the result produced by model * \param[in] score_threshold threshold for result scores, the bounding box will not be shown if the score is less than score_threshold * \param[in] line_size line size for bounding boxes * \param[in] font_size font size for text * \return cv::Mat type stores the visualized results */ FASTDEPLOY_DECL cv::Mat VisDetection(const cv::Mat& im, const DetectionResult& result, float score_threshold = 0.0, int line_size = 1, float font_size = 0.5f); /** \brief Show the visualized results with custom labels for detection models * * \param[in] im the input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format * \param[in] result the result produced by model * \param[in] labels the visualized result will show the bounding box contain class label * \param[in] score_threshold threshold for result scores, the bounding box will not be shown if the score is less than score_threshold * \param[in] line_size line size for bounding boxes * \param[in] font_size font size for text * \return cv::Mat type stores the visualized results */ FASTDEPLOY_DECL cv::Mat VisDetection(const cv::Mat& im, const DetectionResult& result, const std::vector& labels, float score_threshold = 0.0, int line_size = 1, float font_size = 0.5f); /** \brief Show the visualized results for classification models * * \param[in] im the input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format * \param[in] result the result produced by model * \param[in] top_k the length of return values, e.g., if topk==2, the result will include the 2 most possible class label for input image. * \param[in] score_threshold threshold for top_k scores, the class will not be shown if the score is less than score_threshold * \param[in] font_size font size * \return cv::Mat type stores the visualized results */ FASTDEPLOY_DECL cv::Mat VisClassification( const cv::Mat& im, const ClassifyResult& result, int top_k = 5, float score_threshold = 0.0f, float font_size = 0.5f); /** \brief Show the visualized results with custom labels for classification models * * \param[in] im the input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format * \param[in] result the result produced by model * \param[in] labels custom labels for user, the visualized result will show the corresponding custom labels * \param[in] top_k the length of return values, e.g., if topk==2, the result will include the 2 most possible class label for input image. * \param[in] score_threshold threshold for top_k scores, the class will not be shown if the score is less than score_threshold * \param[in] font_size font size * \return cv::Mat type stores the visualized results */ FASTDEPLOY_DECL cv::Mat VisClassification( const cv::Mat& im, const ClassifyResult& result, const std::vector& labels, int top_k = 5, float score_threshold = 0.0f, float font_size = 0.5f); /** \brief Show the visualized results for face detection models * * \param[in] im the input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format * \param[in] result the result produced by model * \param[in] line_size line size for bounding boxes * \param[in] font_size font size for text * \return cv::Mat type stores the visualized results */ FASTDEPLOY_DECL cv::Mat VisFaceDetection(const cv::Mat& im, const FaceDetectionResult& result, int line_size = 1, float font_size = 0.5f); /** \brief Show the visualized results for face alignment models * * \param[in] im the input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format * \param[in] result the result produced by model * \param[in] line_size line size for circle point * \return cv::Mat type stores the visualized results */ FASTDEPLOY_DECL cv::Mat VisFaceAlignment(const cv::Mat& im, const FaceAlignmentResult& result, int line_size = 1); /** \brief Show the visualized results for segmentation models * * \param[in] im the input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format * \param[in] result the result produced by model * \param[in] weight transparent weight of visualized result image * \return cv::Mat type stores the visualized results */ FASTDEPLOY_DECL cv::Mat VisSegmentation(const cv::Mat& im, const SegmentationResult& result, float weight = 0.5); /** \brief Show the visualized results for matting models * * \param[in] im the input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format * \param[in] result the result produced by model * \param[in] remove_small_connected_area if remove_small_connected_area==true, the visualized result will not include the small connected areas * \return cv::Mat type stores the visualized results */ FASTDEPLOY_DECL cv::Mat VisMatting(const cv::Mat& im, const MattingResult& result, bool remove_small_connected_area = false); /** \brief Show the visualized results for Ocr models * * \param[in] im the input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format * \param[in] result the result produced by model * \return cv::Mat type stores the visualized results */ FASTDEPLOY_DECL cv::Mat VisOcr(const cv::Mat& im, const OCRResult& ocr_result); FASTDEPLOY_DECL cv::Mat VisMOT(const cv::Mat& img, const MOTResult& results, float score_threshold = 0.0f, tracking::TrailRecorder* recorder = nullptr); /** \brief Swap the image background with MattingResult * * \param[in] im the input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format * \param[in] background the background image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format * \param[in] result the MattingResult produced by model * \param[in] remove_small_connected_area if remove_small_connected_area==true, the visualized result will not include the small connected areas * \return cv::Mat type stores the visualized results */ FASTDEPLOY_DECL cv::Mat SwapBackground(const cv::Mat& im, const cv::Mat& background, const MattingResult& result, bool remove_small_connected_area = false); /** \brief Swap the image background with SegmentationResult * * \param[in] im the input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format * \param[in] background the background image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format * \param[in] result the SegmentationResult produced by model * \param[in] background_label the background label number in SegmentationResult * \return cv::Mat type stores the visualized results */ FASTDEPLOY_DECL cv::Mat SwapBackground(const cv::Mat& im, const cv::Mat& background, const SegmentationResult& result, int background_label); /** \brief Show the visualized results for key point detection models * * \param[in] im the input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format * \param[in] results the result produced by model * \param[in] conf_threshold threshold for result scores, the result will not be shown if the score is less than conf_threshold * \return cv::Mat type stores the visualized results */ FASTDEPLOY_DECL cv::Mat VisKeypointDetection(const cv::Mat& im, const KeyPointDetectionResult& results, float conf_threshold = 0.5f); FASTDEPLOY_DECL cv::Mat VisHeadPose(const cv::Mat& im, const HeadPoseResult& result, int size = 50, int line_size = 1); } // namespace vision } // namespace fastdeploy