""" # Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ # This file is modified from https://github.com/vllm-project/vllm/collect_env.py import datetime import locale import os import subprocess import sys # Unlike the rest of the PyTorch this file must be python2 compliant. # This script outputs relevant system environment info # Run it with `python collect_env.py` or `python -m torch.utils.collect_env` from collections import namedtuple import regex as re from fastdeploy.envs import environment_variables try: import torch TORCH_AVAILABLE = True except (ImportError, NameError, AttributeError, OSError): TORCH_AVAILABLE = False try: import paddle PADDLE_AVAILABLE = True except (ImportError, NameError, AttributeError, OSError): PADDLE_AVAILABLE = False # System Environment Information SystemEnv = namedtuple( "SystemEnv", [ "torch_version", "is_debug_build", "cuda_compiled_version", "paddle_version", "cuda_compiled_version_paddle", "gcc_version", "clang_version", "cmake_version", "os", "libc_version", "python_version", "python_platform", "is_cuda_available", "cuda_runtime_version", "cuda_module_loading", "nvidia_driver_version", "nvidia_gpu_models", "cudnn_version", "pip_version", # 'pip' or 'pip3' "pip_packages", "conda_packages", "is_xnnpack_available", "cpu_info", "fastdeploy_version", # fastdploy specific field "fastdeploy_build_flags", # fastdploy specific field "gpu_topo", # fastdploy specific field "env_vars", ], ) DEFAULT_CONDA_PATTERNS = { "torch", "numpy", "cudatoolkit", "soumith", "mkl", "magma", "triton", "optree", "nccl", "transformers", "zmq", "nvidia", "pynvml", } DEFAULT_PIP_PATTERNS = { "torch", "numpy", "mypy", "flake8", "triton", "optree", "onnx", "nccl", "transformers", "zmq", "nvidia", "pynvml", } def run(command): """Return (return-code, stdout, stderr).""" shell = True if type(command) is str else False try: p = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=shell) raw_output, raw_err = p.communicate() rc = p.returncode if get_platform() == "win32": enc = "oem" else: enc = locale.getpreferredencoding() output = raw_output.decode(enc) if command == "nvidia-smi topo -m": # don't remove the leading whitespace of `nvidia-smi topo -m` # because they are meaningful output = output.rstrip() else: output = output.strip() err = raw_err.decode(enc) return rc, output, err.strip() except FileNotFoundError: cmd_str = command if isinstance(command, str) else command[0] return 127, "", f"Command not found: {cmd_str}" def run_and_read_all(run_lambda, command): """Run command using run_lambda; reads and returns entire output if rc is 0.""" rc, out, _ = run_lambda(command) if rc != 0: return None return out def run_and_parse_first_match(run_lambda, command, regex): """Run command using run_lambda, returns the first regex match if it exists.""" rc, out, _ = run_lambda(command) if rc != 0: return None match = re.search(regex, out) if match is None: return None return match.group(1) def run_and_return_first_line(run_lambda, command): """Run command using run_lambda and returns first line if output is not empty.""" rc, out, _ = run_lambda(command) if rc != 0: return None return out.split("\n")[0] def get_conda_packages(run_lambda, patterns=None): if patterns is None: patterns = DEFAULT_CONDA_PATTERNS conda = os.environ.get("CONDA_EXE", "conda") out = run_and_read_all(run_lambda, [conda, "list"]) if out is None: return out return "\n".join( line for line in out.splitlines() if not line.startswith("#") and any(name in line for name in patterns) ) def get_gcc_version(run_lambda): return run_and_parse_first_match(run_lambda, "gcc --version", r"gcc (.*)") def get_clang_version(run_lambda): return run_and_parse_first_match(run_lambda, "clang --version", r"clang version (.*)") def get_cmake_version(run_lambda): return run_and_parse_first_match(run_lambda, "cmake --version", r"cmake (.*)") def get_nvidia_driver_version(run_lambda): if get_platform() == "darwin": cmd = "kextstat | grep -i cuda" return run_and_parse_first_match(run_lambda, cmd, r"com[.]nvidia[.]CUDA [(](.*?)[)]") smi = get_nvidia_smi() return run_and_parse_first_match(run_lambda, smi, r"Driver Version: (.*?) ") def get_gpu_info(run_lambda): if get_platform() == "darwin": if TORCH_AVAILABLE and torch.cuda.is_available(): gcnArch = "" return torch.cuda.get_device_name(None) + gcnArch return None smi = get_nvidia_smi() uuid_regex = re.compile(r" \(UUID: .+?\)") rc, out, _ = run_lambda(smi + " -L") if rc != 0: return None # Anonymize GPUs by removing their UUID return re.sub(uuid_regex, "", out) def get_running_cuda_version(run_lambda): return run_and_parse_first_match(run_lambda, "nvcc --version", r"release .+ V(.*)") def get_cudnn_version(run_lambda): """Return a list of libcudnn.so; it's hard to tell which one is being used.""" if get_platform() == "win32": system_root = os.environ.get("SYSTEMROOT", "C:\\Windows") cuda_path = os.environ.get("CUDA_PATH", "%CUDA_PATH%") where_cmd = os.path.join(system_root, "System32", "where") cudnn_cmd = '{} /R "{}\\bin" cudnn*.dll'.format(where_cmd, cuda_path) elif get_platform() == "darwin": # CUDA libraries and drivers can be found in /usr/local/cuda/. See # https://docs.nvidia.com/cuda/cuda-installation-guide-mac-os-x/index.html#install # https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#installmac # Use CUDNN_LIBRARY when cudnn library is installed elsewhere. cudnn_cmd = "ls /usr/local/cuda/lib/libcudnn*" else: cudnn_cmd = 'ldconfig -p | grep libcudnn | rev | cut -d" " -f1 | rev' rc, out, _ = run_lambda(cudnn_cmd) # find will return 1 if there are permission errors or if not found if len(out) == 0 or (rc != 1 and rc != 0): l = os.environ.get("CUDNN_LIBRARY") if l is not None and os.path.isfile(l): return os.path.realpath(l) return None files_set = set() for fn in out.split("\n"): fn = os.path.realpath(fn) # eliminate symbolic links if os.path.isfile(fn): files_set.add(fn) if not files_set: return None # Alphabetize the result because the order is non-deterministic otherwise files = sorted(files_set) if len(files) == 1: return files[0] result = "\n".join(files) return "Probably one of the following:\n{}".format(result) def get_nvidia_smi(): # Note: nvidia-smi is currently available only on Windows and Linux smi = "nvidia-smi" if get_platform() == "win32": system_root = os.environ.get("SYSTEMROOT", "C:\\Windows") program_files_root = os.environ.get("PROGRAMFILES", "C:\\Program Files") legacy_path = os.path.join(program_files_root, "NVIDIA Corporation", "NVSMI", smi) new_path = os.path.join(system_root, "System32", smi) smis = [new_path, legacy_path] for candidate_smi in smis: if os.path.exists(candidate_smi): smi = '"{}"'.format(candidate_smi) break return smi def get_fastdeploy_version(): import pkg_resources version = os.environ.get("FASTDEPLOY_VERSION") if version: return version try: return pkg_resources.get_distribution("fastdeploy").version except: pass try: result = subprocess.run(["pip", "show", "fastdeploy"], capture_output=True, text=True) if result.returncode == 0: for line in result.stdout.split("\n"): if line.startswith("Version:"): return line.split(":")[1].strip() except: pass return "unknown (could not determine version)" def summarize_fastdeploy_build_flags(): # This could be a static method if the flags are constant, or dynamic if you need to check environment variables, etc. return "CUDA Archs: {};".format(os.getenv("FD_BUILDING_ARCS", "[]")) def get_gpu_topo(run_lambda): output = None if get_platform() == "linux": output = run_and_read_all(run_lambda, "nvidia-smi topo -m") if output is None: output = run_and_read_all(run_lambda, "rocm-smi --showtopo") return output # example outputs of CPU infos # * linux # Architecture: x86_64 # CPU op-mode(s): 32-bit, 64-bit # Address sizes: 46 bits physical, 48 bits virtual # Byte Order: Little Endian # CPU(s): 128 # On-line CPU(s) list: 0-127 # Vendor ID: GenuineIntel # Model name: Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz # CPU family: 6 # Model: 106 # Thread(s) per core: 2 # Core(s) per socket: 32 # Socket(s): 2 # Stepping: 6 # BogoMIPS: 5799.78 # Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr # sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl # xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq monitor ssse3 fma cx16 # pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand # hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced # fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap # avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 # xsaves wbnoinvd ida arat avx512vbmi pku ospke avx512_vbmi2 gfni vaes vpclmulqdq # avx512_vnni avx512_bitalg tme avx512_vpopcntdq rdpid md_clear flush_l1d arch_capabilities # Virtualization features: # Hypervisor vendor: KVM # Virtualization type: full # Caches (sum of all): # L1d: 3 MiB (64 instances) # L1i: 2 MiB (64 instances) # L2: 80 MiB (64 instances) # L3: 108 MiB (2 instances) # NUMA: # NUMA node(s): 2 # NUMA node0 CPU(s): 0-31,64-95 # NUMA node1 CPU(s): 32-63,96-127 # Vulnerabilities: # Itlb multihit: Not affected # L1tf: Not affected # Mds: Not affected # Meltdown: Not affected # Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown # Retbleed: Not affected # Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp # Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization # Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence # Srbds: Not affected # Tsx async abort: Not affected # * win32 # Architecture=9 # CurrentClockSpeed=2900 # DeviceID=CPU0 # Family=179 # L2CacheSize=40960 # L2CacheSpeed= # Manufacturer=GenuineIntel # MaxClockSpeed=2900 # Name=Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz # ProcessorType=3 # Revision=27142 # # Architecture=9 # CurrentClockSpeed=2900 # DeviceID=CPU1 # Family=179 # L2CacheSize=40960 # L2CacheSpeed= # Manufacturer=GenuineIntel # MaxClockSpeed=2900 # Name=Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz # ProcessorType=3 # Revision=27142 def get_cpu_info(run_lambda): rc, out, err = 0, "", "" if get_platform() == "linux": rc, out, err = run_lambda("lscpu") elif get_platform() == "win32": rc, out, err = run_lambda( "wmic cpu get Name,Manufacturer,Family,Architecture,ProcessorType,DeviceID, \ CurrentClockSpeed,MaxClockSpeed,L2CacheSize,L2CacheSpeed,Revision /VALUE" ) elif get_platform() == "darwin": rc, out, err = run_lambda("sysctl -n machdep.cpu.brand_string") cpu_info = "None" if rc == 0: cpu_info = out else: cpu_info = err return cpu_info def get_platform(): if sys.platform.startswith("linux"): return "linux" elif sys.platform.startswith("win32"): return "win32" elif sys.platform.startswith("cygwin"): return "cygwin" elif sys.platform.startswith("darwin"): return "darwin" else: return sys.platform def get_mac_version(run_lambda): return run_and_parse_first_match(run_lambda, "sw_vers -productVersion", r"(.*)") def get_windows_version(run_lambda): system_root = os.environ.get("SYSTEMROOT", "C:\\Windows") wmic_cmd = os.path.join(system_root, "System32", "Wbem", "wmic") findstr_cmd = os.path.join(system_root, "System32", "findstr") return run_and_read_all(run_lambda, "{} os get Caption | {} /v Caption".format(wmic_cmd, findstr_cmd)) def get_lsb_version(run_lambda): return run_and_parse_first_match(run_lambda, "lsb_release -a", r"Description:\t(.*)") def check_release_file(run_lambda): return run_and_parse_first_match(run_lambda, "cat /etc/*-release", r'PRETTY_NAME="(.*)"') def get_os(run_lambda): from platform import machine platform = get_platform() if platform == "win32" or platform == "cygwin": return get_windows_version(run_lambda) if platform == "darwin": version = get_mac_version(run_lambda) if version is None: return None return "macOS {} ({})".format(version, machine()) if platform == "linux": # Ubuntu/Debian based desc = get_lsb_version(run_lambda) if desc is not None: return "{} ({})".format(desc, machine()) # Try reading /etc/*-release desc = check_release_file(run_lambda) if desc is not None: return "{} ({})".format(desc, machine()) return "{} ({})".format(platform, machine()) # Unknown platform return platform def get_python_platform(): import platform return platform.platform() def get_libc_version(): import platform if get_platform() != "linux": return "N/A" return "-".join(platform.libc_ver()) def get_pip_packages(run_lambda, patterns=None): """Return `pip list` output. Note: will also find conda-installed pytorch and numpy packages.""" if patterns is None: patterns = DEFAULT_PIP_PATTERNS def run_with_pip(): try: import importlib.util pip_spec = importlib.util.find_spec("pip") pip_available = pip_spec is not None except ImportError: pip_available = False if pip_available: cmd = [sys.executable, "-mpip", "list", "--format=freeze"] elif os.environ.get("UV") is not None: print("uv is set") cmd = ["uv", "pip", "list", "--format=freeze"] else: raise RuntimeError("Could not collect pip list output (pip or uv module not available)") out = run_and_read_all(run_lambda, cmd) return "\n".join(line for line in out.splitlines() if any(name in line for name in patterns)) pip_version = "pip3" if sys.version[0] == "3" else "pip" out = run_with_pip() return pip_version, out def get_cuda_module_loading_config(): if TORCH_AVAILABLE and torch.cuda.is_available(): torch.cuda.init() config = os.environ.get("CUDA_MODULE_LOADING", "") return config else: return "N/A" def is_xnnpack_available(): if TORCH_AVAILABLE: try: import torch.backends.xnnpack return str(torch.backends.xnnpack.enabled) # type: ignore[attr-defined] except: return "N/A" else: return "N/A" def get_env_vars(): env_vars = "" secret_terms = ("secret", "token", "api", "access", "password") report_prefix = ("TORCH", "NCCL", "PYTORCH", "CUDA", "CUBLAS", "CUDNN", "OMP_", "MKL_", "NVIDIA") for k, v in os.environ.items(): if any(term in k.lower() for term in secret_terms): continue if k in environment_variables: env_vars = env_vars + "{}={}".format(k, v) + "\n" if k.startswith(report_prefix): env_vars = env_vars + "{}={}".format(k, v) + "\n" return env_vars def get_env_info(): run_lambda = run pip_version, pip_list_output = get_pip_packages(run_lambda) if TORCH_AVAILABLE: version_str = torch.__version__ debug_mode_str = str(torch.version.debug) torch_cuda_available_str = str(torch.cuda.is_available()) cuda_version_str = torch.version.cuda else: version_str = debug_mode_str = torch_cuda_available_str = cuda_version_str = "N/A" if PADDLE_AVAILABLE: paddle_version_str = paddle.__version__ paddle_cuda_available_str = str(torch.cuda.is_available()) paddle_cuda_version_str = str(paddle.version.cuda()) else: version_str = paddle_cuda_available_str = cuda_version_str = "N/A" if torch_cuda_available_str == "True" or paddle_cuda_available_str == "True": cuda_available_str = "True" else: cuda_available_str = "False" sys_version = sys.version.replace("\n", " ") conda_packages = get_conda_packages(run_lambda) fastdeploy_version = get_fastdeploy_version() fastdeploy_build_flags = summarize_fastdeploy_build_flags() gpu_topo = get_gpu_topo(run_lambda) return SystemEnv( torch_version=version_str, is_debug_build=debug_mode_str, paddle_version=paddle_version_str, cuda_compiled_version_paddle=paddle_cuda_version_str, python_version="{} ({}-bit runtime)".format(sys_version, sys.maxsize.bit_length() + 1), python_platform=get_python_platform(), is_cuda_available=cuda_available_str, cuda_compiled_version=cuda_version_str, cuda_runtime_version=get_running_cuda_version(run_lambda), cuda_module_loading=get_cuda_module_loading_config(), nvidia_gpu_models=get_gpu_info(run_lambda), nvidia_driver_version=get_nvidia_driver_version(run_lambda), cudnn_version=get_cudnn_version(run_lambda), pip_version=pip_version, pip_packages=pip_list_output, conda_packages=conda_packages, os=get_os(run_lambda), libc_version=get_libc_version(), gcc_version=get_gcc_version(run_lambda), clang_version=get_clang_version(run_lambda), cmake_version=get_cmake_version(run_lambda), is_xnnpack_available=is_xnnpack_available(), cpu_info=get_cpu_info(run_lambda), fastdeploy_version=fastdeploy_version, fastdeploy_build_flags=fastdeploy_build_flags, gpu_topo=gpu_topo, env_vars=get_env_vars(), ) env_info_fmt = """ ============================== System Info ============================== OS : {os} GCC version : {gcc_version} Clang version : {clang_version} CMake version : {cmake_version} Libc version : {libc_version} ============================== PyTorch Info ============================== PyTorch version : {torch_version} Is debug build : {is_debug_build} CUDA used to build PyTorch : {cuda_compiled_version} ============================== Paddle Info ============================== Paddle version : {paddle_version} CUDA used to build paddle : {cuda_compiled_version_paddle} ============================== Python Environment ============================== Python version : {python_version} Python platform : {python_platform} ============================== CUDA / GPU Info ============================== Is CUDA available : {is_cuda_available} CUDA runtime version : {cuda_runtime_version} CUDA_MODULE_LOADING set to : {cuda_module_loading} GPU models and configuration : {nvidia_gpu_models} Nvidia driver version : {nvidia_driver_version} cuDNN version : {cudnn_version} Is XNNPACK available : {is_xnnpack_available} ============================== CPU Info ============================== {cpu_info} ============================== Versions of relevant libraries ============================== {pip_packages} {conda_packages} """.strip() # both the above code and the following code use `strip()` to # remove leading/trailing whitespaces, so we need to add a newline # in between to separate the two sections env_info_fmt += "\n\n" env_info_fmt += """ ============================== FastDeploy Info ============================== FastDeply Version : {fastdeploy_version} FastDeply Build Flags: {fastdeploy_build_flags} GPU Topology: {gpu_topo} ============================== Environment Variables ============================== {env_vars} """.strip() def pretty_str(envinfo): def replace_nones(dct, replacement="Could not collect"): for key in dct.keys(): if dct[key] is not None: continue dct[key] = replacement return dct def replace_bools(dct, true="Yes", false="No"): for key in dct.keys(): if dct[key] is True: dct[key] = true elif dct[key] is False: dct[key] = false return dct def prepend(text, tag="[prepend]"): lines = text.split("\n") updated_lines = [tag + line for line in lines] return "\n".join(updated_lines) def replace_if_empty(text, replacement="No relevant packages"): if text is not None and len(text) == 0: return replacement return text def maybe_start_on_next_line(string): # If `string` is multiline, prepend a \n to it. if string is not None and len(string.split("\n")) > 1: return "\n{}\n".format(string) return string mutable_dict = envinfo._asdict() # If nvidia_gpu_models is multiline, start on the next line mutable_dict["nvidia_gpu_models"] = maybe_start_on_next_line(envinfo.nvidia_gpu_models) # If the machine doesn't have CUDA, report some fields as 'No CUDA' dynamic_cuda_fields = [ "cuda_runtime_version", "nvidia_gpu_models", "nvidia_driver_version", ] all_cuda_fields = dynamic_cuda_fields + ["cudnn_version"] all_dynamic_cuda_fields_missing = all(mutable_dict[field] is None for field in dynamic_cuda_fields) if TORCH_AVAILABLE and not torch.cuda.is_available() and all_dynamic_cuda_fields_missing: for field in all_cuda_fields: mutable_dict[field] = "No CUDA" if envinfo.cuda_compiled_version is None: mutable_dict["cuda_compiled_version"] = "None" # Replace True with Yes, False with No mutable_dict = replace_bools(mutable_dict) # Replace all None objects with 'Could not collect' mutable_dict = replace_nones(mutable_dict) # If either of these are '', replace with 'No relevant packages' mutable_dict["pip_packages"] = replace_if_empty(mutable_dict["pip_packages"]) mutable_dict["conda_packages"] = replace_if_empty(mutable_dict["conda_packages"]) # Tag conda and pip packages with a prefix # If they were previously None, they'll show up as ie '[conda] Could not collect' if mutable_dict["pip_packages"]: mutable_dict["pip_packages"] = prepend(mutable_dict["pip_packages"], "[{}] ".format(envinfo.pip_version)) if mutable_dict["conda_packages"]: mutable_dict["conda_packages"] = prepend(mutable_dict["conda_packages"], "[conda] ") mutable_dict["cpu_info"] = envinfo.cpu_info return env_info_fmt.format(**mutable_dict) def get_pretty_env_info(): return pretty_str(get_env_info()) def main(): print("Collecting environment information...") output = get_pretty_env_info() print(output) if TORCH_AVAILABLE and hasattr(torch, "utils") and hasattr(torch.utils, "_crash_handler"): minidump_dir = torch.utils._crash_handler.DEFAULT_MINIDUMP_DIR if sys.platform == "linux" and os.path.exists(minidump_dir): dumps = [os.path.join(minidump_dir, dump) for dump in os.listdir(minidump_dir)] latest = max(dumps, key=os.path.getctime) ctime = os.path.getctime(latest) creation_time = datetime.datetime.fromtimestamp(ctime).strftime("%Y-%m-%d %H:%M:%S") msg = ( "\n*** Detected a minidump at {} created on {}, ".format(latest, creation_time) + "if this is related to your bug please include it when you file a report ***" ) print(msg, file=sys.stderr) if __name__ == "__main__": main()