// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "fastdeploy/pybind/main.h" namespace fastdeploy { void BindPPSeg(pybind11::module& m) { pybind11::class_( m, "PaddleSegPreprocessor") .def(pybind11::init()) .def("run", [](vision::segmentation::PaddleSegPreprocessor& self, std::vector& im_list) { std::vector images; for (size_t i = 0; i < im_list.size(); ++i) { images.push_back(vision::WrapMat(PyArrayToCvMat(im_list[i]))); } // Record the shape of input images std::map>> imgs_info; std::vector outputs; if (!self.Run(&images, &outputs, &imgs_info)) { throw std::runtime_error("Failed to preprocess the input data in PaddleSegPreprocessor."); } for (size_t i = 0; i < outputs.size(); ++i) { outputs[i].StopSharing(); } return make_pair(outputs, imgs_info);; }) .def("disable_normalize", [](vision::segmentation::PaddleSegPreprocessor& self) { self.DisableNormalize(); }) .def("disable_permute", [](vision::segmentation::PaddleSegPreprocessor& self) { self.DisablePermute(); }) .def_property("is_vertical_screen", &vision::segmentation::PaddleSegPreprocessor::GetIsVerticalScreen, &vision::segmentation::PaddleSegPreprocessor::SetIsVerticalScreen); pybind11::class_( m, "PaddleSegModel") .def(pybind11::init()) .def("clone", [](vision::segmentation::PaddleSegModel& self) { return self.Clone(); }) .def("predict", [](vision::segmentation::PaddleSegModel& self, pybind11::array& data) { auto mat = PyArrayToCvMat(data); vision::SegmentationResult res; self.Predict(&mat, &res); return res; }) .def("batch_predict", [](vision::segmentation::PaddleSegModel& self, std::vector& data) { std::vector images; for (size_t i = 0; i < data.size(); ++i) { images.push_back(PyArrayToCvMat(data[i])); } std::vector results; self.BatchPredict(images, &results); return results; }) .def_property_readonly("preprocessor", &vision::segmentation::PaddleSegModel::GetPreprocessor) .def_property_readonly("postprocessor", &vision::segmentation::PaddleSegModel::GetPostprocessor); pybind11::class_( m, "PaddleSegPostprocessor") .def(pybind11::init()) .def("run", [](vision::segmentation::PaddleSegPostprocessor& self, std::vector& inputs, const std::map>>& imgs_info) { std::vector results; if (!self.Run(inputs, &results, imgs_info)) { throw std::runtime_error("Failed to postprocess the runtime result in PaddleSegPostprocessor."); } return results; }) .def("run", [](vision::segmentation::PaddleSegPostprocessor& self, std::vector& input_array, const std::map>>& imgs_info) { std::vector results; std::vector inputs; PyArrayToTensorList(input_array, &inputs, /*share_buffer=*/true); if (!self.Run(inputs, &results, imgs_info)) { throw std::runtime_error("Failed to postprocess the runtime result in PaddleSegPostprocessor."); } return results; }) .def_property("apply_softmax", &vision::segmentation::PaddleSegPostprocessor::GetApplySoftmax, &vision::segmentation::PaddleSegPostprocessor::SetApplySoftmax) .def_property("store_score_map", &vision::segmentation::PaddleSegPostprocessor::GetStoreScoreMap, &vision::segmentation::PaddleSegPostprocessor::SetStoreScoreMap); } } // namespace fastdeploy