""" # Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ import argparse import json import os import time from multiprocessing import shared_memory from typing import Tuple import numpy as np import paddle import paddle.distributed as dist from paddle.distributed import fleet from fastdeploy import envs from fastdeploy.config import ( CacheConfig, DeviceConfig, EarlyStopConfig, EPLBConfig, ErnieArchitectures, FDConfig, GraphOptimizationConfig, LoadConfig, ModelConfig, ParallelConfig, PlasAttentionConfig, SpeculativeConfig, StructuredOutputsConfig, ) from fastdeploy.eplb.async_expert_loader import ( MODEL_MAIN_NAME, REARRANGE_EXPERT_MAGIC_NUM, create_mmap, load_tensor_from_shm_mem, ) from fastdeploy.eplb.experts_manager import RedundantExpertManager from fastdeploy.eplb.utils import RearrangeExpertState from fastdeploy.inter_communicator import EngineWorkerQueue as TaskQueue from fastdeploy.inter_communicator import ExistTaskStatus, IPCSignal, ModelWeightsStatus from fastdeploy.model_executor.layers.quantization import parse_quant_config from fastdeploy.model_executor.utils import v1_loader_support from fastdeploy.platforms import current_platform from fastdeploy.scheduler import SchedulerConfig from fastdeploy.utils import get_logger, optional_type from fastdeploy.worker.worker_base import WorkerBase logger = get_logger("worker_process", "worker_process.log") def get_worker(fd_config: FDConfig, local_rank: int, rank: int) -> WorkerBase: """ get worker of different device """ if fd_config.model_config.enable_logprob and not current_platform.is_cuda(): raise NotImplementedError("Only CUDA platform supports logprob.") if current_platform.is_dcu(): from fastdeploy.worker.dcu_worker import DcuWorker return DcuWorker(fd_config=fd_config, local_rank=local_rank, rank=rank) if current_platform.is_cuda(): from fastdeploy.worker.gpu_worker import GpuWorker return GpuWorker(fd_config=fd_config, local_rank=local_rank, rank=rank) if current_platform.is_xpu(): from fastdeploy.worker.xpu_worker import XpuWorker return XpuWorker(fd_config=fd_config, local_rank=local_rank, rank=rank) if current_platform.is_iluvatar(): from fastdeploy.worker.iluvatar_worker import IluvatarWorker return IluvatarWorker(fd_config=fd_config, local_rank=local_rank, rank=rank) if current_platform.is_gcu(): from fastdeploy.worker.gcu_worker import GcuWorker return GcuWorker(fd_config=fd_config, local_rank=local_rank, rank=rank) if current_platform.is_maca(): from fastdeploy.worker.metax_worker import MetaxWorker return MetaxWorker(fd_config=fd_config, local_rank=local_rank, rank=rank) if current_platform.is_intel_hpu(): from fastdeploy.worker.hpu_worker import HpuWorker return HpuWorker(fd_config=fd_config, local_rank=local_rank, rank=rank) def init_distributed_environment(seed: int = 20) -> Tuple[int, int]: """Initialize Paddle Fleet and get rank of worker""" # Global rank ranks = dist.get_world_size() dist_strategy = fleet.DistributedStrategy() if ranks > 0: dist_strategy.hybrid_configs = { "dp_degree": 1, "mp_degree": ranks, "pp_degree": 1, "sharding_degree": 1, } # Set control in tensor parallel dist_strategy.tensor_parallel_configs = {"tensor_init_seed": seed} fleet.init(is_collective=True, strategy=dist_strategy) # Local rank local_rank = fleet.worker_index() else: local_rank = 0 return ranks, local_rank def update_fd_config_for_mm(fd_config: FDConfig) -> None: architectures = fd_config.model_config.architectures if fd_config.model_config.enable_mm and ErnieArchitectures.contains_ernie_arch(architectures): fd_config.model_config.tensor_parallel_degree = fd_config.parallel_config.tensor_parallel_size fd_config.model_config.tensor_parallel_rank = fd_config.parallel_config.tensor_parallel_rank fd_config.model_config.vision_config.dtype = fd_config.model_config.dtype class PaddleDisWorkerProc: """ Paddle Distributed wrapper for fastdeploy.worker.Worker, for handling single-node multi-GPU tensor parallel. The wrapper internally executes an event loop that continuously executes requests in the task queue. Control flow is transmitted by IPC. """ def __init__(self, fd_config: FDConfig, ranks: int = 1, local_rank: int = 0) -> None: """ Initialize a distributed worker and task queue for single-node multi-GPU setup. Args: fd_config (FDConfig): Arguments related to inference, containing attributes such as weight_dtype, act_dtype, mp_size, hidden_size, head_dim, num_attention_heads, and ffn_hidden_size. """ self.ranks = ranks self.local_rank = local_rank self.fd_config = fd_config self.parallel_config = fd_config.parallel_config self.cache_config = fd_config.cache_config self.scheduler_config = fd_config.scheduler_config self.eplb_config = fd_config.eplb_config # TODO(gongshaotian): Use worker factory to get worker self.worker = get_worker(fd_config=fd_config, local_rank=self.local_rank, rank=self.ranks) self.max_chips_per_node = 16 if current_platform.is_iluvatar() else 8 def init_health_status(self) -> None: """ Initialize the health status of the worker. Worker Status: worker_ready_signal: worker_healthy_live_signal: exist_task_signal: exist_swapped_task_signal: model_weights_status: """ self.max_chips_per_node = 16 if current_platform.is_iluvatar() else 8 if self.parallel_config.data_parallel_size > 1 and not envs.FD_ENABLE_MULTI_API_SERVER: launched_expert_service_signal_data = np.zeros( shape=[self.parallel_config.data_parallel_size // self.fd_config.nnode], dtype=np.int32 ) self.launched_expert_service_signal = IPCSignal( name="launched_expert_service_signal", array=launched_expert_service_signal_data, dtype=np.int32, suffix=self.parallel_config.engine_pid, create=False, ) while ( self.launched_expert_service_signal.value[ self.parallel_config.local_data_parallel_id % self.max_chips_per_node ] == 0 ): pass # init worker_ready_signal array_size = min( self.max_chips_per_node, self.parallel_config.tensor_parallel_size * self.parallel_config.data_parallel_size, ) workers_ready = np.zeros(shape=[array_size], dtype=np.int32) self.worker_ready_signal = IPCSignal( name="worker_ready_signal", array=workers_ready, dtype=np.int32, suffix=self.parallel_config.engine_pid, create=False, ) self.worker_ready_signal.value[self.local_rank % self.max_chips_per_node] = 1 # init worker_healthy_live_signal workers_alive = np.zeros(shape=[min(array_size, self.parallel_config.tensor_parallel_size)], dtype=np.int32) self.worker_healthy_live_signal = IPCSignal( name="worker_healthy_live_signal", array=workers_alive, dtype=np.int32, suffix=self.parallel_config.engine_worker_queue_port, create=False, ) local_rank = self.local_rank % self.parallel_config.tensor_parallel_size self.worker_healthy_live_signal.value[local_rank % self.max_chips_per_node] = int(time.time()) # init model_weights_status workers_model_weights = np.zeros(shape=[1], dtype=np.int32) self.model_weights_status = IPCSignal( name="model_weights_status", array=workers_model_weights, dtype=np.int32, suffix=self.parallel_config.engine_worker_queue_port, create=False, ) # init exist_task_signal workers_exist_task = np.zeros([1], dtype=np.int32) self.exist_task_signal = IPCSignal( name="exist_task_signal", array=workers_exist_task, dtype=np.int32, suffix=self.parallel_config.engine_worker_queue_port, create=False, ) # init exist_swapped_task_signal workers_swapped_task = np.zeros(shape=[1], dtype=np.int32) self.exist_swapped_task_signal = IPCSignal( name="exist_swapped_task_signal", array=workers_swapped_task, dtype=np.int32, suffix=self.parallel_config.engine_worker_queue_port, create=False, ) # init exist_prefill_task_signal exist_prefill_task_signal_data = np.zeros([1], dtype=np.int32) self.exist_prefill_task_signal = IPCSignal( name="exist_prefill_task_signal", array=exist_prefill_task_signal_data, dtype=np.int32, suffix=self.parallel_config.engine_worker_queue_port, create=False, ) def update_weights_from_tensor(self, mmap_infos): """ update_weights_from_tensor """ state_dicts = load_tensor_from_shm_mem(self.experts_manager.tensor_infos, mmap_infos[MODEL_MAIN_NAME], logger) rank_expert_list, logical_to_physical_map, expert_count = self.experts_manager.get_ep_rank_to_expert_id_list() self.worker.get_model().redundant_table_manger.update_expert_rank_table( rank_expert_list, logical_to_physical_map, expert_count ) # TO BE FIXED self.worker.get_model().update_state_dict(state_dicts) def _broadcast_model_weights_signal(self, src: int, group) -> int: model_weights_signal_tensor = paddle.full(shape=[1], fill_value=self.model_weights_signal[0], dtype="int32") paddle.distributed.broadcast(model_weights_signal_tensor, src=src, group=group) return model_weights_signal_tensor.item() def _tp_barrier_wait(self): if current_platform.is_xpu(): self.task_queue.worker_process_tp_barrier.wait() else: paddle.distributed.barrier(self.parallel_config.tp_group) def event_loop_normal(self) -> None: """Main event loop for Paddle Distributed Workers. TODO(gongshaotian): support remote calling of functions that control worker. """ if self.eplb_config.enable_redundant_experts: self.last_dump_expert_workload_ts = 0 self.experts_manager = RedundantExpertManager( rank=self.local_rank, ep_size=self.ranks, fd_config=self.fd_config ) num_layers = self.fd_config.model_config.num_hidden_layers num_experts = self.fd_config.model_config.moe_num_experts expert_token_stats = np.zeros((num_layers, num_experts), dtype=np.int32) shm_local_experts_token_stats = shared_memory.SharedMemory( create=False, size=expert_token_stats.nbytes, name=f"{envs.get_unique_name('local_experts_token_stats_dprank' + self.local_rank)}", ) expert_tokens_stats_array = np.ndarray( expert_token_stats.shape, dtype=expert_token_stats.dtype, buffer=shm_local_experts_token_stats.buf ) signal_clear_experts_token_stats = np.zeros([1], dtype=np.int32) shm_signal_clear_experts_token_stats = shared_memory.SharedMemory( create=False, size=signal_clear_experts_token_stats.nbytes, name=f"{envs.get_unique_name('signal_clear_experts_token_stats_dprank' + self.local_rank)}", ) signal_clear_experts_token_stats_array = np.ndarray( signal_clear_experts_token_stats.shape, dtype=signal_clear_experts_token_stats.dtype, buffer=shm_signal_clear_experts_token_stats.buf, ) if self.local_rank == 0: signal_update_weight_from_tensor = np.zeros([1], dtype=np.int32) shm_signal_update_weight_from_tensor = shared_memory.SharedMemory( create=False, size=signal_update_weight_from_tensor.nbytes, name=f"{envs.get_unique_name('signal_update_weight_from_tensor_dprank' + self.local_rank)}", ) signal_update_weight_from_tensor_array = np.ndarray( signal_update_weight_from_tensor.shape, dtype=signal_update_weight_from_tensor.dtype, buffer=shm_signal_update_weight_from_tensor.buf, ) rearrange_experts_status = np.zeros([1], dtype=np.int32) shm_rearrange_experts_status = shared_memory.SharedMemory( create=False, size=rearrange_experts_status.nbytes, name=f"{envs.get_unique_name('rearrange_experts_status_dprank' + self.local_rank)}", ) rearrange_experts_status_array = np.ndarray( rearrange_experts_status.shape, dtype=rearrange_experts_status.dtype, buffer=shm_rearrange_experts_status.buf, ) expert_workload_dump_interval = envs.FD_REDUNDANT_EXPERT_DUMP_WORKLOAD_INTERVAL mmap_infos = create_mmap( [MODEL_MAIN_NAME], self.local_rank, self.ranks, shm_uuid=os.getenv("SHM_UUID", ""), logger=logger ) # Currently, only support single node self.nnode = int((self.parallel_config.tensor_parallel_size + 7) // 8) req_ids = [] num_running_requests = 0 local_rank = self.local_rank % self.parallel_config.tensor_parallel_size self.model_weights_signal = np.zeros([1], dtype=np.int32) while True: if self.eplb_config.enable_redundant_experts: rearrange_time = time.time() # 获取专家负载 if expert_tokens_stats_array is not None and ( int(rearrange_time) - self.last_dump_expert_workload_ts > expert_workload_dump_interval ): self.last_dump_expert_workload_ts = int(rearrange_time) clear_stat = False if signal_clear_experts_token_stats_array[0] == 1: clear_stat = True signal_clear_experts_token_stats_array[0] = 0 ( new_stats_array, _, _, _, ) = self.worker.get_model().redundant_table_manger.get_expert_tokens_stats(clear_stat=clear_stat) expert_tokens_stats_array[:] = new_stats_array[:] elif expert_tokens_stats_array is None: logger.warning("redundant_expert: expert_tokens_stats_array not init") # 所有DP同步更新权重 broadcast_value = 0 if self.local_rank == 0 and signal_update_weight_from_tensor_array[0] == 1: logger.info("redundant_expert: update_weight_from_tensor broadcast signal") signal_update_weight_from_tensor_array[0] = 0 broadcast_value = REARRANGE_EXPERT_MAGIC_NUM data = paddle.to_tensor([broadcast_value]) paddle.distributed.broadcast(data, 0) if data[0] == REARRANGE_EXPERT_MAGIC_NUM: self.update_weights_from_tensor(mmap_infos) logger.info( f"redundant_expert: update_weight_from_tensor success, cost {(time.time() - rearrange_time)*1000}ms" ) paddle.distributed.barrier() if self.local_rank == 0: rearrange_experts_status_array[0] = RearrangeExpertState.done.value logger.info("redundant_expert: done") if self.local_rank % self.parallel_config.tensor_parallel_size == 0: if self.model_weights_status.value[0] != ModelWeightsStatus.NORMAL: self.model_weights_signal[0] = int(self.model_weights_status.value[0]) if self.fd_config.load_config.dynamic_load_weight and self.parallel_config.enable_expert_parallel: self.model_weights_signal[0] = self._broadcast_model_weights_signal( src=0, group=self.parallel_config.ep_group ) if self.fd_config.load_config.dynamic_load_weight and self.parallel_config.tensor_parallel_size > 1: self.model_weights_signal[0] = self._broadcast_model_weights_signal( src=0, group=self.parallel_config.tp_group ) self.insert_step = False req_dicts = None local_rank = self.local_rank % self.parallel_config.tensor_parallel_size self.worker_healthy_live_signal.value[local_rank % self.max_chips_per_node] = int(time.time()) # The first worker detects whether there are tasks in the task queue if local_rank == 0: if self.task_queue.num_tasks() > 0: if envs.ENABLE_V1_KVCACHE_SCHEDULER or not ( self.fd_config.model_config.enable_mm and self.worker.exist_prefill() ): if self.nnode > 1 and self.parallel_config.tensor_parallel_size > self.max_chips_per_node: self.task_queue.read_finish_flag.set(1) else: self.exist_task_signal.value[0] = ExistTaskStatus.EXIST if self.parallel_config.tensor_parallel_size > 1: # Synchronize the signal for other workers self._tp_barrier_wait() if self.fd_config.load_config.dynamic_load_weight: if self.parallel_config.enable_expert_parallel: paddle.distributed.barrier(self.parallel_config.ep_group) else: paddle.distributed.barrier(self.parallel_config.tp_group) if self.model_weights_signal[0] != ModelWeightsStatus.NORMAL: logger.info( f"Rank: {self.local_rank} to update or clear parameters, signal is {self.model_weights_signal[0]}, [-1:clear, 1:update]" ) from fastdeploy.rl.dynamic_weight_manager import ( DynamicWeightManager, ) self.model_weights_status.value[0] = self.model_weights_signal[0] DynamicWeightManager.check_model_weights_status( self.model_weights_status, # model_weights_signal self.worker.model_runner, self.parallel_config.engine_worker_queue_port, ) logger.info(f"current task queue data: {self.task_queue.num_tasks()}") self.task_queue.clear_data() self.model_weights_signal[0] = ModelWeightsStatus.NORMAL logger.info(f"Rank: {self.local_rank} has updated or cleared parameters.") if self.exist_task_signal.value[0] == ExistTaskStatus.EXIST or self.task_queue.read_finish_flag.get() == 1: logger.info(f"Rank: {self.local_rank} Detected new requests.") self.insert_step = True tasks, read_finish = self.task_queue.get_tasks() if read_finish: # Ensure that every worker get the task self.exist_task_signal.value[0] = ExistTaskStatus.EMPTY self.task_queue.read_finish_flag.set(0) req_dicts = [] for req_dict, bsz in tasks: num_running_requests = int(bsz) req_dicts.extend(req_dict) req_ids = [req.request_id for req in req_dicts] logger.info( f"Rank: {self.local_rank}, num_running_requests: {num_running_requests}, " f"num_insert_requests: {len(req_dicts)}, req_ids: {req_ids}" ) # Process prefill inputs self.worker.preprocess_new_task(req_dicts, num_running_requests) if (not self.parallel_config.use_ep) and (not self.worker.model_runner.not_need_stop()): if self.ranks > 1: self._tp_barrier_wait() time.sleep(0.001) continue # Execute model to generate token. The generated token will be written to the buffer. # These generated tokens can be obtained through get_output op. self.worker.execute_model(req_dicts, num_running_requests) self.exist_prefill_task_signal.value[0] = self.worker.exist_prefill() def initialize_kv_cache(self) -> None: """Profiles the peak memory usage of the model to determine how many KV blocks may be allocated without OOMs. The engine will first conduct a profiling of the existing memory usage. Then, it calculate the maximum possible number of GPU and CPU blocks that can be allocated with the remaining free memory. .. tip:: You may limit the usage of GPU memory by adjusting the `gpu_memory_utilization` parameter. """ if self.fd_config.parallel_config.do_profile: # 1. Get available memory(bytes) available_kv_cache_memory = self.worker.determine_available_memory() logger.info(f"------- available_kv_cache_memory:{available_kv_cache_memory / 1024**3} GB --------") # 2. Calculate the appropriate number of blocks model_block_memory_used = self.worker.cal_theortical_kvcache() num_blocks_local = int(available_kv_cache_memory // model_block_memory_used) # NOTE(liuzichang): Too many block will lead to illegal memory access # We will develop dynamic limits in future. if num_blocks_local > 40000: logger.info(f"------- Reset num_blocks_local {num_blocks_local} to 40000") num_blocks_local = min(40000, num_blocks_local) logger.info(f"------- model_block_memory_used:{model_block_memory_used / 1024**3} GB --------") logger.info(f"------- num_blocks_local:{num_blocks_local} --------") if num_blocks_local <= 0: raise ValueError( "The total number of blocks cannot be less than zero. " "Please increase gpu_memory_utilization " "Or decrease max_num_batched_tokens(max model length)." ) if self.ranks > 1: num_blocks_local = paddle.full(shape=[1], fill_value=num_blocks_local, dtype="int32") dist.all_reduce(num_blocks_local, op=dist.ReduceOp.MIN) num_blocks_local = num_blocks_local.item() if self.local_rank % self.max_chips_per_node == 0: # 3. Send IPCSignal get_profile_block_num = np.zeros(shape=[1], dtype=np.int32) self.get_profile_block_num_signal = IPCSignal( name="get_profile_block_num", array=get_profile_block_num, dtype=np.int32, suffix=self.parallel_config.engine_pid, create=False, ) self.get_profile_block_num_signal.value[0] = num_blocks_local else: num_blocks_local = self.fd_config.cache_config.total_block_num logger.info(f"------- num_blocks_global: {num_blocks_local} --------") # 4. init kv_cache with accurate num_blocks self.worker.initialize_cache(num_gpu_blocks=num_blocks_local) def graph_optimize_and_warm_up_model(self) -> None: self.worker.graph_optimize_and_warm_up_model() # reset cache_messager prefilled_step signal if not envs.ENABLE_V1_KVCACHE_SCHEDULER and self.scheduler_config.splitwise_role == "prefill": gpu_id = self.worker.model_runner.device_id prefilled_step_name = f"splitwise_complete_prefilled_step_{self.local_rank}" prefilled_step_idx_data = np.zeros(shape=[1], dtype=np.int32) step_shm_value = IPCSignal( name=prefilled_step_name, array=prefilled_step_idx_data, dtype=np.int32, suffix=gpu_id, create=False ) step_shm_value.value[0] = -1 def init_device(self) -> None: """Initialize device and Construct model runner""" self.worker.init_device() def start_task_queue_service(self): # Initialize task queue if not envs.FD_ENGINE_TASK_QUEUE_WITH_SHM: task_address = ( self.parallel_config.pod_ip, self.parallel_config.engine_worker_queue_port, ) else: task_address = f"/dev/shm/fd_task_queue_{self.parallel_config.engine_worker_queue_port}.sock" logger.info(f"connect task queue address {task_address}") self.task_queue = TaskQueue( address=task_address, is_server=False, num_client=self.parallel_config.tensor_parallel_size, client_id=self.parallel_config.tensor_parallel_rank, local_data_parallel_id=self.parallel_config.local_data_parallel_id, ) def load_model(self) -> None: """Load weights and create model""" self.worker.load_model() loaded_model_signal_data = np.zeros(shape=[1], dtype=np.int32) self.loaded_model_signal = IPCSignal( name="loaded_model_signal", array=loaded_model_signal_data, dtype=np.int32, suffix=self.parallel_config.engine_pid, create=False, ) if self.ranks > 1: paddle.distributed.barrier() self.loaded_model_signal.value[0] = 1 def parse_args(): """ Parse args from command line """ parser = argparse.ArgumentParser("FastDeploy LLM Inference") parser.add_argument( "-m", "--model", type=str, default="./output", help="model dir", ) parser.add_argument("-mbs", "--max_num_seqs", type=int, default=34, help="max batch size") parser.add_argument("--num_gpu_blocks_override", type=int, default=None) parser.add_argument("--block_size", type=int, default=64) parser.add_argument("--pod_ip", type=str, default="127.0.0.1") parser.add_argument("--engine_worker_queue_port", type=str, default="9923") parser.add_argument("--max_model_len", type=int, default=3072, help="max model len") parser.add_argument("--device_ids", type=str, default="0", help="cuda visible devices") parser.add_argument("--dtype", type=str, default="bfloat16", help="input dtype") parser.add_argument("--enc_dec_block_num", type=int, default=1, help="encoder's decoder num") parser.add_argument( "--kv_cache_ratio", type=float, default=0.7, help="kv cache ratio for input", ) parser.add_argument("--first_token_id", type=int, default=1, help="first token id") parser.add_argument( "--gpu_memory_utilization", type=float, default=0.9, help="gpu memory utilization", ) parser.add_argument("--engine_pid", type=int, default=None, help="Process ID of engine") parser.add_argument("--do_profile", action="store_true", help="do profile or not") parser.add_argument("--pad_token_id", type=int, default=-1, help="pad token id") parser.add_argument("--eos_tokens_lens", type=int, default=2, help="eos token lens") parser.add_argument( "--enable_chunked_prefill", action="store_true", help="enable chunked prefill", ) parser.add_argument( "--use_internode_ll_two_stage", action="store_true", help="enable internode_ll_two_stage", ) parser.add_argument( "--speculative_config", type=json.loads, default=None, help="Configuration of SpeculativeConfig.", ) parser.add_argument( "--max_num_batched_tokens", type=int, default=2048, help="max num batched tokens", ) parser.add_argument( "--enable_prefix_caching", action="store_true", help="enable prefix cache", ) parser.add_argument( "--disable_custom_all_reduce", action="store_true", help="enable custom all-reduce", ) parser.add_argument("--splitwise_role", type=str, default="mixed", help="splitwise role") parser.add_argument( "--tensor_parallel_size", type=int, default=1, help="tensor parallel size", ) parser.add_argument( "--expert_parallel_size", type=int, default=1, help="expert parallel size", ) parser.add_argument( "--data_parallel_size", type=int, default=1, help="data parallel size", ) parser.add_argument( "--enable_expert_parallel", action="store_true", help="enable expert parallel", ) parser.add_argument("--ori_vocab_size", type=int, default=None) parser.add_argument("--think_end_id", type=int, default=-1) parser.add_argument("--image_patch_id", type=int, default=-1) parser.add_argument("--line_break_id", type=int, default=-1) parser.add_argument( "--quantization", type=json.loads, default=None, help="Quantization name for the model, currently support " "'wint4', 'wint8'," "default is None. The priority of this configuration " "is lower than that of the config file. " "More complex quantization methods need to be configured via the config file.", ) parser.add_argument( "--graph_optimization_config", type=json.loads, default=None, help="Configuration of Graph optimization backend.", ) parser.add_argument( "--plas_attention_config", type=json.loads, default=None, help="Configation of plas attention.", ) parser.add_argument( "--guided_decoding_backend", type=str, default="off", help="guided decoding backend", ) parser.add_argument( "--disable_any_whitespace", action="store_false", help="Disable any whitespace for guided decoding.", ) parser.add_argument( "--dynamic_load_weight", action="store_true", help="Enable dynamic weight loading strategy", ) parser.add_argument( "--load_strategy", type=str, choices=["ipc", "ipc_snapshot", "meta", "normal"], default="ipc_snapshot", help="Weight loading method when dynamic loading is enabled: " "'ipc': real-time IPC streaming with automatic resharding, " "'ipc_snapshot': load from disk snapshot of IPC weights.", ) parser.add_argument( "--enable_logprob", action="store_true", help="Enable output of token-level log probabilities.", ) parser.add_argument( "--max_logprobs", type=int, default=20, help="Maximum number of log probabilities.", ) parser.add_argument( "--logprobs_mode", type=str, default="raw_logprobs", help="Indicates the content returned in the logprobs.", ) parser.add_argument( "--reasoning_parser", type=str, default=None, help="Flag specifies the reasoning parser to use for extracting reasoning content from the model output", ) parser.add_argument( "--early_stop_config", type=json.loads, default=None, help="Configuration of early stop.", ) parser.add_argument( "--load_choices", type=str, default="default", help="The format of the model weights to load. default/new_loader.", ) parser.add_argument( "--ips", type=str, default=None, help="The ips of multinode deployment.", ) parser.add_argument( "--lm_head_fp32", action="store_true", help="Flag to specify dtype of lm_head as FP32", ) parser.add_argument( "--max_encoder_cache", type=int, help="Maximum encoder cache tokens(use 0 to disable).", ) parser.add_argument( "--cache-transfer-protocol", type=str, default="ipc", help="support protocol list, comma separated, default is ipc", ) parser.add_argument( "--runner", type=str, default="auto", help="The type of model runner to use.Each FD instance only supports one model runner.even if the same model can be used for multiple types.", ) parser.add_argument( "--convert", type=str, default="auto", help="Convert the model using adapters. The most common use case is to adapt a text generation model to be used for pooling tasks.", ) parser.add_argument( "--override-pooler-config", type=optional_type(json.loads), default=None, help="Override configuration for the pooler.", ) parser.add_argument( "--logits-processors", type=str, nargs="+", default=[], help="FQCNs (Fully Qualified Class Names) of logits processors supported by the service.", ) args = parser.parse_args() return args def initialize_fd_config(args, ranks: int = 1, local_rank: int = 0) -> FDConfig: """Initialize FDConfig from either RolloutModelConfig or argparse.Namespace Args: config: Configuration object containing all parameters (either RolloutModelConfig or argparse.Namespace) Returns: FDConfig: Initialized FastDeploy configuration object """ # RL rollout paddle.set_default_dtype(args.dtype) model_config = ModelConfig(vars(args)) device_config = DeviceConfig(vars(args)) speculative_config = SpeculativeConfig(args.speculative_config) parallel_config = ParallelConfig(vars(args)) cache_config = CacheConfig(vars(args)) scheduler_config = SchedulerConfig(vars(args)) parallel_config.tensor_parallel_rank = local_rank % parallel_config.tensor_parallel_size parallel_config.data_parallel_rank = local_rank // parallel_config.tensor_parallel_size # config for EP if parallel_config.expert_parallel_size > 1: expert_parallel_rank = int(local_rank % parallel_config.expert_parallel_size) if isinstance(model_config.moe_num_experts, list): num_experts = model_config.moe_num_experts[0] else: num_experts = model_config.moe_num_experts num_experts_per_rank = num_experts // parallel_config.expert_parallel_size num_experts_start_offset = expert_parallel_rank * num_experts_per_rank max_chips_per_node = 16 if current_platform.is_iluvatar() else 8 parallel_config.local_data_parallel_id = parallel_config.data_parallel_rank % ( max_chips_per_node // parallel_config.tensor_parallel_size ) parallel_config.expert_parallel_rank = expert_parallel_rank parallel_config.num_experts_per_rank = num_experts_per_rank parallel_config.num_experts_start_offset = num_experts_start_offset if args.load_strategy != "meta": parallel_config.engine_worker_queue_port = parallel_config.engine_worker_queue_port[ parallel_config.local_data_parallel_id ] parallel_config.set_communicate_group() load_config = LoadConfig(vars(args)) graph_opt_config = GraphOptimizationConfig(args.graph_optimization_config) plas_attention_config = PlasAttentionConfig(args.plas_attention_config) early_stop_config = EarlyStopConfig(args.early_stop_config) eplb_config = EPLBConfig() structured_outputs_config: StructuredOutputsConfig = StructuredOutputsConfig(args=vars(args)) # Note(tangbinhan): used for load_checkpoint model_config.pretrained_config.tensor_parallel_rank = parallel_config.tensor_parallel_rank model_config.pretrained_config.tensor_parallel_degree = parallel_config.tensor_parallel_size model_config.pretrained_config.is_mtp = False model_config.pretrained_config.head_dim = model_config.head_dim logger.info(f"parallel_config.use_ep {parallel_config.use_ep}") logger.info(f"parallel_config.tensor_parallel_size {parallel_config.tensor_parallel_size}") logger.info(f"parallel_config.tensor_parallel_rank {parallel_config.tensor_parallel_rank}") logger.info(f"parallel_config.engine_worker_queue_port {parallel_config.engine_worker_queue_port}") if getattr(model_config, "num_hidden_layers", None) is None: raise ValueError("num_hidden_layers is None") quant_config = parse_quant_config( args, model_config, is_ernie=ErnieArchitectures.contains_ernie_arch(model_config.architectures), is_v1_loader=load_config.load_choices == "default_v1", ) # Log quantization info logger.info("===========quantization_config==============") if quant_config is not None: if model_config.is_quantized: logger.info("Model Status: Offline Quantized (pre-quantized weights loaded)") else: logger.info("Model Status: Original (will apply online quantization)") logger.info(f"{model_config.quantization_config}") else: logger.info("No quantization config found and use original weight and act dtype.") logger.info(f"- Dynamic load weight: {load_config.dynamic_load_weight}") logger.info(f"- Load strategy: {load_config.load_strategy}") if args.splitwise_role != "mixed" and args.cache_transfer_protocol != "rdma": envs.ENABLE_V1_KVCACHE_SCHEDULER = 0 if not current_platform.is_cuda() and not current_platform.is_xpu(): logger.info("Set ENABLE_V1_KVCACHE_SCHEDULER to 0 due to not supported.") envs.ENABLE_V1_KVCACHE_SCHEDULER = 0 if structured_outputs_config.guided_decoding_backend != "off": logger.info("Set ENABLE_V1_KVCACHE_SCHEDULER to 0 due to not supported guided_decoding.") envs.ENABLE_V1_KVCACHE_SCHEDULER = 0 if envs.ENABLE_V1_KVCACHE_SCHEDULER and args.splitwise_role == "prefill": os.environ["PREFILL_NODE_ONE_STEP_STOP_V1"] = "1" fd_config = FDConfig( model_config=model_config, parallel_config=parallel_config, speculative_config=speculative_config, device_config=device_config, load_config=load_config, quant_config=quant_config, graph_opt_config=graph_opt_config, early_stop_config=early_stop_config, cache_config=cache_config, scheduler_config=scheduler_config, ips=args.ips, plas_attention_config=plas_attention_config, structured_outputs_config=structured_outputs_config, eplb_config=eplb_config, ) update_fd_config_for_mm(fd_config) if fd_config.load_config.load_choices == "default_v1" and not v1_loader_support(fd_config): fd_config.load_config.load_choices = "default" architecture = fd_config.model_config.architectures[0] if "PaddleOCR" in architecture: envs.FD_ENABLE_MAX_PREFILL = 1 fd_config.cache_config.enable_prefix_caching = False fd_config.cache_config.max_encoder_cache = 0 return fd_config def run_worker_proc() -> None: """ start worker process """ # Get args form Engine args = parse_args() ranks, local_rank = init_distributed_environment() # Get fd_config fd_config = initialize_fd_config(args, ranks, local_rank) # Create worker process if current_platform.is_iluvatar(): from fastdeploy.worker.iluvatar_worker import IluvatarPaddleDisWorkerProc worker_proc = IluvatarPaddleDisWorkerProc(fd_config, ranks, local_rank) else: worker_proc = PaddleDisWorkerProc(fd_config, ranks, local_rank) # Initialize device and create model runner worker_proc.init_device() # Load model worker_proc.load_model() # Initialize KV Cache worker_proc.initialize_kv_cache() # Trigger CUDAGraph capture worker_proc.graph_optimize_and_warm_up_model() # Initialize health status worker_proc.init_health_status() worker_proc.start_task_queue_service() # Start event loop worker_proc.event_loop_normal() if __name__ == "__main__": run_worker_proc()